

2-66 Enhanced Reductive Dechlorination Interim Measure – Final Report

Boeing Plant 2 Seattle/Tukwila, Washington

Prepared For:

The Boeing Company P.O. Box 3707 M/C 1W-12 Seattle/Tukwila, WA 98124

July 20, 2011

Prepared By:

Environmental Partners, Inc. 295 N.E. Gilman Blvd., Suite 201 Issaquah, Washington 98027 (425) 395-0010

Jeff Dengler, PhD, PE Senior Engineer

Project Number: 17513.0.2

OR LUK TRIV

Douglas Kunkel, LG, LHG

Principal Hydrogeologist

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2.0	INTERIM MEASURE IMPLEMENTATION	3
3.0	PERFORMANCE MONITORING METHODOLOGY	4
4.0	PERFORMANCE MONITORING RESULTS	6
	4.1 Ninth Quarter Sampling Results	6
	4.2 Tenth Quarter Sampling Results	7
	4.3 Data Trend Analysis	8
5.0	OVERALL IM PERFORMANCE EVALUATION	10
6.0	CONCLUSIONS	11
7.0	SCHEDULE	12
8.0	REFERENCES	13

TABLES

- Table 1 2-66 ERD IM Groundwater Field Parameter Summary
- Table 2 2-66 ERD IM Ninth Quarter Groundwater Monitoring Analytical Results (January 2011)
- Table 3 2-66 ERD IM Tenth Quarter Groundwater Monitoring Analytical Results (April 2011)
- Table 4 2-66 ERD IM Groundwater Monitoring Analytical Data Summary
- Table 5 2-66 ERD IM Overall Performance Summary

FIGURES

- Figure 1 General Location Boeing Plant 2
- Figure 2 Site Representation
- Figure 3 Plan View of the 2-66 ERD IM
- Figure 4 VOC Trend Plots for PL2-021A and PL2-035A
- Figure 5 VOC Trend plots of PL2-010A and PP-4B-I

ATTACHMENTS

- Attachment A Field Parameter Data
- Attachment B Groundwater VOC Analytical Data All Detections
- Attachment C Field Notes
- Attachment D Data Validation Reports

ACRONYMS

bgs below ground surface

cells/ml halorespirer bacterial cells per milliliter

CMS Corrective Measures Study
COC contaminant of concern

°C degrees Celsius DCE dichloroethene

DDC density-driven convection

DO dissolved oxygen
DPT direct-push technology

EPA United States Environmental Protection Agency

EPI Environmental Partners, Inc.
ERD enhanced reductive dechlorination

IM Interim Measure mg/L milligrams per liter

mS/cm milliSiemens per centimeter

mV millivolts

μg/L micrograms per liter

NTU nephlometric turbidity units

NO₃ nitrate ion

ORP oxidation-reduction potential

RT-PCR real time polymerase chain reaction

SAP Sampling and Analysis Plan

SO₄ sulfate ion TCE trichloroethene

TMCL Target Media Cleanup Level

TOC total organic carbon

VC vinyl chloride

VOC volatile organic compound

1.0 INTRODUCTION

This fifth and final semiannual report presents data and evaluations of the ninth and tenth quarterly sampling results for the Enhanced Reductive Dechlorination (ERD) Interim Measure (IM) at the 2-66 Sheetpile in the 2-66 Area at Boeing Plant 2. This report presents data generated during the time period from November 2010 through April 2011 and includes evaluations of data generated throughout the performance of this IM.

Ongoing demolition and construction work at Plant 2 has resulted in limited access to monitoring wells associated with the 2-66 ERD IM. In addition, heavy truck traffic through the area containing the 2-66 ERD IM monitoring well network has made groundwater sampling unreasonably dangerous and disruptive to surrounding operations. Boeing requested approval from the United States Environmental Protection Agency Region X (EPA) to discontinue groundwater monitoring and reporting associated with the 2-66 ERD IM and transition this IM into the Corrective Measures Study Report (CMS) process. EPA approved Boeing's request to terminate ongoing groundwater monitoring and reporting associated with the 2-66 ERD IM in an email dated June 2, 2011.

Accordingly, the IM will end with the April 2011 monitoring event, and this final semiannual report will include an overall ERD performance evaluation for the 2-66 ERD IM. IMs historically performed at this specific location are installation of a hanging sheetpile in 1998, implementation of density-driven convection (DDC) in 2004, and ERD implementation in 2008.

In a letter dated August 18, 2008 from the EPA to Boeing, EPA gave approval to implement the *Interim Measure Work Plan for 2-66 Sheetpile* (Environmental Partners, Inc. [EPI], 2008). This work plan presented details for continued remediation to be performed on groundwater impacted by chlorinated volatile organic compounds (VOCs) inside the 2-66 Sheetpile. Figure 1 presents a general location map of Plant 2 and Figure 2 is a site representation showing the location of the 2-66 Sheetpile within Plant 2.

In a letter to Boeing dated September 17, 2009, EPA required two modifications to the approved 2-66 ERD IM work plan. The modifications are:

- Quarterly sampling of all monitoring wells inside of the 2-66 sheetpile for chlorinated VOCs, metals, and pH; and
- Quarterly sampling of wells PL2-041AA (PL2-008A), PP-2B-O, and PP-4B-O for chlorinated VOCs, metals, and pH.

The EPA letter also specified that Boeing should continue to follow the approved work plan to sequence analyses for other constituents at selected wells inside the sheetpile. In response to this letter, Boeing issued a revised *Interim Measure Work Plan for 2-66 Sheetpile* dated October 19, 2009 (EPI, 2009a). The work plan modifications added wells PL2-041AA (PL2-008A), PL2-008C, PP-2B-O, and PP-4B-O to the monitoring schedule beginning with the fourth quarter 2009 sampling event (October 2009).

2-66 ERD Interim Measure – Final Report Boeing Plant 2, Seattle/Tukwila, Washington July 20, 2011

Two IMs were previously completed in this area. In 1994, the 2-66 sheetpile structure was installed to contain the bulk of high-concentration VOCs in soil and to prevent migration of VOC-impacted groundwater to the Duwamish Waterway. A 2001 study concluded that, based on hydraulic and contaminant concentration data, the 2-66 Sheetpile structure effectively contains the bulk of VOC impacted soil and groundwater in the area (Weston, 2001). In 2004, two DDC wells were installed inside the sheetpile to remediate vadose zone soil and groundwater within the 2-66 Sheetpile structure. Results of an evaluation performed in 2006 indicated that the chlorinated VOC mass inside the sheetpile was reduced by approximately 98 percent in both soil and groundwater as reported in the *Interim Measure Evaluation and Completion Report at the Building 2-66 Sheetpile* (EPI, 2007a). This report concluded that continued operation of the DDC system to remediate the last few hundred pounds of VOCs would be inefficient and remediation could be more effectively and efficiently performed using *in situ* ERD. Based on this conclusion Boeing proposed, and EPA approved, the application of ERD as the next IM remediation step at the 2-66 Sheetpile.

Analytical results presented in the 2-66 Area Data Gap Investigation Report (EPI, 2007b) indicate that the main contaminants of concern (COCs) inside the 2-66 Sheetpile are the chlorinated VOCs trichloroethene (TCE), cis-1,2-dichloroethene (DCE), and vinyl chloride (VC). Figures showing the distribution and constituent concentrations of impacted groundwater within the sheetpile structure are presented in the 2-66 Area Data Gap Investigation Report (EPI, 2007b) and in the IM Work Plan (EPI, 2009a). Figure 3 presents the 2-66 Sheetpile and vicinity showing direct-push technology (DPT) injection point locations and monitoring wells associated with the ERD IM.

2.0 INTERIM MEASURE IMPLEMENTATION

ERD is an *in situ* chemical application that temporarily modifies groundwater geochemistry to promote the growth of halorespirer bacteria that are effective in the sequential reductive dechlorination of chlorinated VOCs. Under appropriate geochemical conditions certain anaerobic bacteria can metabolize chlorinated VOCs by successively removing chlorine atoms from the ethene backbone until only ethene or ethane gas remains.

Implementation of the 2-66 ERD IM consisted of the following steps, which were reported in 2-66 Enhanced Reductive Dechlorination Interim Measure – First Semiannual Report (EPI, 2009b).

- · Baseline groundwater monitoring
- Injection of the nutrient substrate solution
- Performance monitoring of the remedial technology

Baseline groundwater sampling was performed at 15 monitoring wells inside the 2-66 Sheetpile on August 27 and September 2 and 3, 2008. Baseline monitoring was conducted to provide initial COC concentrations and subsurface geochemical conditions prior to implementing ERD.

A nutrient substrate solution of approximately 6 percent sugar and 2,400 milligrams per liter (mg/L) of sodium bicarbonate buffer in potable water was injected by DPT into a grid of 26 locations spread uniformly inside of the 2-66 Sheetpile at the locations shown in Figure 3. The initial nutrient substrate injections took place from October 7 to 16, 2008. Because the B level of the aquifer is naturally more anaerobic at Plant 2, a lesser volume of nutrient substrate was injected to promote ERD in the B level. Approximately 9,500 pounds of sugar was injected throughout the 2-66 Sheetpile; 7,520 pounds (13,400 gallons of substrate) were injected into the A level and 1,980 pounds (3,500 gallons of substrate) were injected into the B level. A more detailed description of the nutrient substrate injection is presented in the First Semiannual Report (EPI, 2009b).

Groundwater pH was routinely monitored after injections. Additional buffer solution of sodium bicarbonate dissolved in potable water was added twice to some of the 2-66 Sheetpile wells to increase and buffer groundwater pH to levels appropriate for bacterial growth. Low pH measurements have not been noted in most wells associated with the 2-66 ERD IM after the initial baseline conditions.

A second nutrient substrate injection was conducted from May 4 through May 13, 2010. The second injection was similar to the first injection and was based on the need to replenish nutrient substrate concentrations to maintain geochemical conditions favorable for ERD.

3.0 PERFORMANCE MONITORING METHODOLOGY

Performance groundwater monitoring is done on a quarterly basis to evaluate the degree of success and effect of the ERD remedial treatment. Performance monitoring results are compared to baseline monitoring results and previous performance monitoring results to evaluate changes in contaminant concentrations and trends in subsurface conditions. The first eight quarters of performance monitoring and the associated 2-66 ERD IM reports are listed below.

First Quarter	January 20, 21, 2009	
Second Quarter	April 20, 21, 2009	First Semiannual Report (EPI, 2009b)
Third Quarter	July 20, 21, 2009	
Fourth Quarter	October 19, 20, 2009	Second Semiannual Report (EPI, 2010a)
Fifth Quarter	January 18 - 20, 2010	
Sixth Quarter	April 19 - 22, 2010	Third Semiannual Report (EPI, 2010b)
Seventh Quarter	July 20 - 22, 2010	
Eighth Quarter	October 18 - 21, 2010	Fourth Semiannual Report (EPI, 2011)

Groundwater samples were collected using the methods and procedures presented in Section 3.3 "Sampling Procedures" of the Sampling and Analysis Plan (SAP), presented in Appendix A of the revised IM Work Plan (EPI, 2009a). Monitoring wells sampled for this IM are listed below and their locations are shown in Figure 3.

• PL2-010A	• PL2-035A	• PP-2B-O*
• PL2-017A	• PL2-041AA* (-008A)	• PP-3A-I
• PL2-021A	• PL2-008B	• PP-3B-I
• PL2-021B	• PL2-008C*	• PP-4B-I
• PL2-021C	• PP-1B-I	• PP-4B-O*
• PL2-031A	• PP-2B-I	• PP-5B-I
• PL2-032A		

The four wells marked with an asterisk were added to the performance monitoring network as directed by EPA in its September 17, 2009 letter to Boeing. These additional four wells were sampled starting with the fourth quarter sampling event, October 2009.

Groundwater samples from all 19 wells are analyzed for VOCs by EPA Method 8260C and arsenic and manganese by EPA Methods 200.8 and 6010B. Selected groundwater samples are also analyzed for the following additional constituents:

- Total organic carbon (TOC) by EPA Method 415.1;
- Dissolved gases (methane, ethane, and ethene) by EPA Method RSK-175 (modified);
- Ferrous iron by Method 3500-FED;
- Anions (nitrate [NO₃] and sulfate [SO₄]) by EPA Method 300;
- Organic (fatty) acids by ion chromatography; and
- Bacterial census of halorespirers by the Bio-Dechlor Census Test RT-PCR.

2-66 ERD Interim Measure – Final Report Boeing Plant 2, Seattle/Tukwila, Washington July 20, 2011

Tables in the SAP of the revised IM Work Plan included in Appendix A (EPI, 2009a) present the sampling and analysis schedule and specifications for analytical method reporting limits, containers, preservation, and holding times.

Some groundwater samples from 2-66 ERD IM wells effervesced when exposed to hydrochloric acid in preserved VOC sample vials. This reaction can adversely affect VOC analytical results by stripping VOCs from the sample. To reduce the impact of effervescing samples on analyses, these samples were collected using unpreserved (i.e., no hydrochloric acid) sample vials. This necessary variation from the VOC sampling process, which is documented in the 2-66 ERD IM Work Plan, is consistent with approved VOC sampling procedures in Plant 2 data gap investigation work plans. The use of unpreserved sample vials does not adversely affect sample quality or the analytical reporting limits; however, the unpreserved sample holding time is reduced from 14 days to 7 days.

4.0 PERFORMANCE MONITORING RESULTS

4.1 Ninth Quarter Sampling Results

The ninth quarter of performance monitoring was performed on January 17 to 19, 2011. Field parameter measurements made during sampling are presented in Table 1 and Attachment A. Ninth quarter groundwater analytical data are presented in Table 2 and Attachment B. Field notes for the ninth quarter monitoring event are presented in Attachment C. Data validation results are presented in Attachment D.

Concentrations of the main chlorinated VOC constituents (TCE, DCE, and VC) at well PL2-035A have continued to decrease from greater than 1,000 micrograms per liter (μ g/L) and are now all at concentrations less than 1,000 μ g/L. Chlorinated VOC concentrations in samples from PL2-010A, PL2-021A, and PL2-041AA are also at concentrations less than 1,000 μ g/L. All other samples have chlorinated VOC concentrations that range from less than 4 μ g/L to not detected.

Ethane and ethene are the final daughter products of reductive dechlorination of TCE, DCE, and VC. Detected concentrations of ethane and ethene dissolved gas in samples from PL2-021A, PL2-032A, and PL2-035A indicate that the ERD process has fully dechlorinated (destroyed) some of the chlorinated VOC mass in groundwater in the vicinities of these wells. Field parameter measurements, methane, and ferrous iron concentrations in samples from these same wells also provide data that indicate the IM has achieved the geochemically reducing conditions necessary for ERD, and that the IM design has been achieving this fundamental objective.

TOC concentrations, which are used to evaluate the presence of nutrient substrate, range from 2.33 milligrams per liter (mg/L) at PP-5B-I to 1,260 mg/L at PP-1B-I. TOC concentrations in samples from most wells have decreased from eighth quarter values, with a few TOC concentrations remaining almost unchanged. An exception is well PP-1B-I, at which the sample TOC concentration increased from 168 mg/L during the eighth quarter to 1,260 mg/L during the ninth quarter. This increase is likely a localized effect and is not representative of the general TOC trend. Static groundwater conditions inside the sheetpile limit mixing and dilution of the nutrient substrate by groundwater flow. Due to the sheetpile structure there is no advective flow of groundwater to mix and distribute TOC throughout the aquifer area enclosed by the sheetpile. Tidal pressure fluctuations and diffusion are the main mechanisms available to distribute the nutrient substrate inside of the sheetpile. Injection locations were distributed in a grid pattern across the area inside of the sheetpile. The proximity of injection points to monitoring wells might cause TOC concentration differences in individual wells and differences from quarter to quarter.

The solubility of some metals, notably arsenic and manganese, increases under reducing geochemical conditions and also under low pH conditions. Both of these geochemical conditions can be caused by the ERD process; therefore, arsenic and manganese analyses are included as part of the performance monitoring program. Evaluation of field measured pH data from the 2-66 ERD IM sampling indicates that groundwater is generally in the neutral range of 6.0 to 8.5 and in

2-66 ERD Interim Measure – Final Report Boeing Plant 2, Seattle/Tukwila, Washington July 20, 2011

most cases has become more neutral, relative to baseline conditions since nutrient substrate injection, which contained a buffer to maintain pH conditions favorable for growth of bacterial populations.

The greatest arsenic concentration noted during the ninth quarter was 17.2 μ g/L in the sample from PL2-021A. This concentration is greater than the Plant 2 Target Media Cleanup Level (TMCL) concentration of 8 μ g/L. The arsenic concentration in the baseline sample from PL2-021A was 0.9 μ g/L, but increased to concentrations greater than the Plant 2 TMCL during the first sampling event after the initial nutrient substrate injection. The baseline sample from PL2-021A had the greatest initial TCE concentration of all the wells in the 2-66 ERD IM monitoring network. Arsenic concentrations in samples from all other wells were less than the Plant 2 TMCL.

Manganese concentrations in samples from all 2-66 ERD IM monitoring wells were less than the Plant 2 TMCL of 2,000 μ g/L for manganese.

The presence and population of halorespirer bacteria are a significant indication of the effectiveness of the ERD process. The addition of nutrient substrate is specifically intended to increase populations of these bacterial species. Bacterial census for halorespirer concentrations at PL2-017A and PL2-021A (the only wells analyzed for this parameter) indicate relatively unchanged populations from the eighth quarter of halorespirer microorganisms required for ERD.

4.2 Tenth Quarter Sampling Results

The tenth quarter performance monitoring was performed April 18 to 21, 2011. Field parameter measurements made during sampling are presented in Table 1 and Attachment A. Tenth quarter groundwater analytical data are presented in Table 3 and Attachment B. Field notes for the tenth quarter monitoring event are presented in Attachment C. Data validation results are presented in Attachment D.

Chlorinated VOC results for tenth quarter samples are only slightly changed from ninth quarter results. TCE and VC concentrations in the sample from PL2-035A increased slightly but remain less than 1,000 μ g/L for both constituents. Chlorinated VOC concentrations in samples from most other wells were relatively unchanged or increased slightly.

Ethane and ethene gas, the end products of reductive dechlorination, were again detected in samples from wells PL2-021A, PL2-032A, and PL2-035A. Detected concentrations of ethane and ethene indicate that the ERD process has fully dechlorinated some of the chlorinated VOC mass in groundwater in the vicinities of these wells. Field parameter measurements, methane, and ferrous iron concentrations in samples from these same wells also provide data that indicate the IM has achieved the geochemically reducing conditions necessary for ERD.

2-66 ERD Interim Measure – Final Report Boeing Plant 2, Seattle/Tukwila, Washington July 20, 2011

TOC, dissolved gases, ferrous iron, anion, and organic acid concentration results for tenth quarter samples were similar or slightly decreased relative to ninth quarter results. The data trend evaluation discussion in the following section will provide additional evaluation of the recent data. The TOC concentration in the sample at PP-1B-I significantly decreased in the tenth quarter, indicating that the localized concentration spike noted in the ninth quarter results is resolving itself.

The greatest concentration of arsenic noted during the tenth quarter was 13.5 μ g/L in the sample from PL2-021A. The arsenic concentration has decreased relative to the ninth quarter event but is still greater than the Plant 2 TMCL concentration of 8 μ g/L. Arsenic concentrations in samples from all other wells were less than the Plant 2 TMCL.

Manganese concentrations in samples from all 2-66 ERD IM monitoring wells were less than the Plant 2 TMCL concentration of 2,000 µg/L for manganese.

Bacterial census population values increased slightly relative to ninth quarter results in the sample from PL2-017A and were generally unchanged in the sample PL2-021A. The continued presence and population of halorespirer bacteria at significantly greater populations than baseline conditions in these two wells are an indication of the effectiveness of the nutrient substrate injections and the ERD process.

4.3 Data Trend Analysis

Table 4 presents analytical results for baseline and ten quarters of performance monitoring. Observations regarding ERD progress at the 2-66 Sheetpile, based on analytical results over the time period since the initial nutrient substrate injection, are presented in the following paragraphs.

Chlorinated VOC data for PL2-021A and PL2-035A presented in Table 4 and shown graphically in Figure 4 indicate that TCE concentrations decreased over time with corresponding temporary increases in the concentrations of less-chlorinated VOCs (i.e., DCE and VC). Continued implementation of the ERD IM resulted in decreasing concentrations of all chlorinated VOCs, including the less-chlorinated VOCs.

TCE concentrations in samples from PL2-021A were relatively large for the baseline sampling event and decreased during successive quarterly sampling events. DCE concentrations initially increased, likely due to reductive dechlorination from TCE to DCE, and then decreased over subsequent sampling events. After a delay, VC concentrations temporarily increased as VC was likely produced from reductive dechlorination of DCE. Data from the fourth through the ninth quarters indicate that VC concentrations steadily decreased with a slight increase during the tenth quarter. Increases in ethane and ethene dissolved gas concentrations, the final products of ERD, correspond with the decreased chlorinated VOC concentrations.

2-66 ERD Interim Measure – Final Report Boeing Plant 2, Seattle/Tukwila, Washington July 20, 2011 – Revised August 23, 2011

A similar progression from more chlorinated VOCs to less-chlorinated VOCs is demonstrated by the data for samples from PL2-035A as presented in Figure 4. At this location the shift in chlorinated VOC concentrations is limited to DCE and VC data possibly caused by TCE at very low concentrations during baseline sampling and for all sampling events.

The chlorinated VOC data for samples from PL2-010A and PP-4B-I are presented graphically in Figure 5. The time series graph for PL2-010A shows a decrease of TCE concentrations with a shift to increased concentrations of DCE and VC through the sixth quarter. From the seventh through tenth quarters DCE and VC concentrations have continued to decrease, but there was an increase in TCE concentrations.

High baseline concentrations of DCE and VC in samples from PP-4B-I decreased rapidly following the initial substrate injection, and then temporarily increased slightly during the third quarter as shown in Figure 5. Current DCE and VC concentrations in samples from PP-4B-I are non-detect or detected at concentrations near the detection limit of 0.2 μ g/L, as presented in Table 4.

Although data variability makes interpretation of data tends from wells with initially low chlorinated VOC concentrations difficult, data supporting demonstrations of the ERD process are evident in the sample results from wells PL2-008B, PL2-032A, PP-2B-I, PP-2B-O, and PP-4B-O. The chlorinated VOC data for samples from these wells support demonstrations of the ERD process and are presented in Table 4.

The presence of dissolved gases, ferrous iron, and organic acid concentrations as well as halorespirer bacteria populations in samples from some wells indicates favorable responses to nutrient injections resulting in successful and ongoing ERD.

As indicated in Table 1, the lowest measured pH values in groundwater from 2-66 ERD IM monitoring wells were generally noted during baseline sampling. Over time pH values have moderated and the second nutrient substrate injection at the 2-66 sheetpile has not resulted in any new low pH measurements, which can occur with ERD.

5.0 OVERALL IM PERFORMANCE EVALUATION

Table 5 presents individual and total chlorinated VOC data for each 2-66 ERD IM monitoring well for baseline and recent quarterly sampling events and presents the calculated percent reduction in total VOCs for each well. Two wells, PL2-031A and PP-3B-I, had low baseline chlorinated VOC concentrations followed by consistent decreases then anomalous increases during the tenth quarter sampling event. For these two wells, the percent reduction was based on the average eighth and ninth quarterly event data, which was more representative of the larger data set for the wells. Four wells, PL2-0041AA, PL2-008C, PP-2B-O, and PP-4B-O, were added to the monitoring program after the IM began (refer to September 17, 2009 letter from EPA to Boeing) and 4th quarter data was used as the baseline for these wells.

Generally, wells with total chlorinated VOC baseline concentrations greater than approximately 30 μ g/L tended to give more consistent and reliable overall performance results than wells with total chlorinated VOC baseline concentrations less 30 μ g/L. The reason is that low total VOC concentration wells had greater sensitivity to data variability, which resulted in greater variability in the percent reduction calculation.

With the exception of well PL2-010A, wells with initial total chlorinated VOC concentrations greater than 30 μ g/L (i.e., PL2-041AA, PL2-008B, PL2-021A, PL2-032A, PL2-035A, PP-2B-I, PP-2B-O, PP-4B-I, and PP-4B-O) have data with overall reductions in total chlorinated VOCs ranging from 61 percent for PL2-041AA to 99 percent for PL2-032A, PP-2B-I, PP-4B-I, and PP-4B-O. The average percent reduction for total chlorinated VOC concentrations for these wells is approximately 90 percent. It is technically valid to give more credence to data from wells with greater initial concentrations of chlorinated VOCs because normal data variability has less impact on the calculation of overall ERD performance.

Chlorinated VOC data from PL2-010A had high initial concentrations but experienced an increase in contaminant concentrations relative to baseline data during operation of the IM. Quarterly data present in Table 4 and Figure 5 indicate that ERD was proceeding as intended at this well during the 4th, 5th, and 6th quarters. Individual chlorinated VOC data for this period show the concentration change and shift from TCE to lesser-chlorinated VOCs typical of ERD performance. However, TCE concentrations increased during the 7th, 8th, 9th, and 10th quarters following the second nutrient substrate injection event, which was performed between the 6th and 7th quarterly sampling events. PL2-010A is located within a chlorinated VOC source area in the vadose zone within the 2-66 sheetpile. It is possible that the second nutrient substrate injection flushed chlorinated VOCs from vadose zone soil into the groundwater during temporary groundwater mounding caused by nutrient substrate injections.

Wells with low initial total chlorinated VOC concentrations (i.e., PL2-008C, PL2-017A, PL2-021B, PL2-021C, PL2-031A, PP-1B-I, and PP-3B-I) have overall changes in total chlorinated VOC concentrations ranging from a decrease of 100 percent to an increase of 43 percent. Small concentration variations due to natural variability and other factors not related to ERD in these low concentration wells could create large changes in the contaminant concentration percent reduction calculation.

6.0 CONCLUSIONS

The first nutrient substrate injection performed in October 2008 initiated the ERD process, which, in turn, stimulated microorganisms in the subsurface to reductively dechlorinate and destroy chlorinated VOCs in groundwater. The second nutrient substrate injection performed in May 2010 provided the necessary nutrient load to groundwater to continue the ongoing ERD process. As a result, chlorinated VOC concentrations for samples from 15 of the 19 monitoring wells sampled for the 2-66 ERD IM have decreased and/or shifted to less-chlorinated forms.

Ethene gas, the end product of reductive dechlorination, was detected in samples at three of the five 2-66 ERD IM wells that were sampled for dissolved gases. The presence of ethene gas in groundwater samples demonstrates that reductive dechlorination of the chlorinated VOCs is occurring. The two wells where ethene was not detected in groundwater samples had very low (single digit) concentrations of chlorinated VOCs throughout their IM sampling history and are, therefore, not expected to generate detectable concentrations of highly volatile ethene gas.

The overall performance evaluation for the approximate 2.5 years of ERD remedial operation indicate an approximate 90 percent overall reduction of total chlorinated VOC mass within the 2-66 sheetpile. Performance results for individual wells are variable depending on initial VOC concentration. Tidal pressure fluctuations and the slow, dispersion-dependent nature of VOC and nutrient substrate distribution within the sheetpile also likely contributed to data variability.

Operation of the 2-66 ERD IM was successful at establishing and maintaining reducing geochemical conditions favorable for reductive dechlorination of chlorinated VOCs. In addition, bacterial census data indicate that nutrient substrate injections increased halorespirer bacteria populations significantly as demonstrated by samples from well PL2-021A.

The success of this IM is demonstrated and quantified by the approximately 90 percent reduction in chlorinated VOC concentrations in 2-66 ERD IM samples from wells with initial total chlorinated VOC concentrations greater than 30 μ g/L. Over the course of both the DDC and ERD IMs performed at the 2-66 Sheetpile, the mass of chlorinated VOCs in groundwater has now been reduced approximately 99 percent. Additionally, the DDC IM was calculated to have reduced the mass of chlorinated VOCs in soil by approximately 98 percent. The DDC IM system performance was reported in "Interim Measure Evaluation and Completion Report at the Building 2-66 Sheetpile" (EPI, 2007a).

7.0 SCHEDULE

This report is the final semiannual report associated with the 2-66 ERD IM. Groundwater monitoring and reporting associated with this IM has been discontinued. Groundwater remediation through ERD processes will continue as long as sufficiently reducing geochemical conditions induced by IM nutrient injections are present in the aquifer.

Additional remediation measures will be evaluated in the Corrective Measures Study currently being performed at Plant 2. Selected soil and groundwater remedies will be performed during Corrective Measures Implementation as necessary and approved through the CMS process.

8.0 REFERENCES

- EPI, 2007a Environmental Partners, Inc. "Interim Measure Evaluation and Completion Report at the Building 2-66 Sheetpile." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. November 21, 2007.
- EPI, 2007b Environmental Partners, Inc. "2-66 Area Data Gap Investigation Report." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. June 15, 2007.
- EPI, 2008 Environmental Partners, Inc. "Interim Measure Work Plan for 2-66 Sheetpile." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. July 3, 2008. [OBSOLETE, see EPI, 2009a]
- EPI, 2009a Environmental Partners, Inc. "Interim Measure Work Plan for 2-66 Sheetpile." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. October 19, 2009.
- EPI, 2009b Environmental Partners, Inc. "2-66 Enhanced Reductive Dechlorination Interim Measure First Semiannual Report." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. June 26, 2009.
- EPI, 2010a Environmental Partners, Inc. "2-66 Enhanced Reductive Dechlorination Interim Measure Second Semiannual Report." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. January 20, 2010/March 11, 2010 (revised).
- EPI, 2010b Environmental Partners, Inc. "2-66 Enhanced Reductive Dechlorination Interim Measure Third Semiannual Report." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. July 21, 2010/September 30, 2010 (revised).
- EPI, 2011 Environmental Partners, Inc. "2-66 Enhanced Reductive Dechlorination Interim Measure Fourth Semiannual Report." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. January 19, 2011.
- Weston, 2001 Roy F. Weston, Inc. "Initial CMS Phase Effectiveness of Buildings 2-10 and 2-66 Interim Measures Monitoring Report." Boeing Plant 2. The Boeing Company, Seattle/Tukwila, Washington. August 29, 2001.

TABLES

Table 1. 2-66 ERD IM Groundwater Field Parameter Summary

Well	Event	Date	Time	Depth to Water (feet)	Total Volume Purged (gallons)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Temperature (°C)	Turbidity (NTUs)	Specific Conductivity (mS/cm)	Comments
PL2-041AA	4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	10/20/09 1/20/10 4/20/10 7/21/10 10/20/10 1/18/11 4/18/11	10:15 10:41 12:29 13:48 15:03 12:55 13:45	8.50 7.85 9.02 10.93 10.91 8.82 9.88	3.1 3.2 1.8 1.4 2.5 3.5 2.3	7.44 7.51 7.53 7.27 7.81 8.17 7.71	0.89 0.30 0.61 0.58 0.84 0.56	-3.0 -161 21.3 -108 -54.5 -45.2 -33.0	16.04 13.95 13.15 16.33 16.24 13.30 12.36	4.33 4.33 2.42 3.78 5.50 3.13 1.63	1.290 1.055 1.017 0.955 1.067 1.040 0.927	clear, yellow clear clear clear, colorless clear clear clear
PL2-008B	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10h Quarter	9/2/08 NS NS 7/20/09 10/20/09 1/20/10 4/21/10 7/21/10 10/18/10 1/18/11 4/18/11	14:03 NS NS 14:09 12:26 9:36 8:40 14:56 11:45 14:00	10.55 NS NS 11.21 9.88 8.09 9.41 11.50 11.45 9.24 10.52	3.3 NS NS 1.5 2.3 4.2 2.5 2.2 2.6 1.5 2.5	5.91 NS NS 7.55 6.85 6.68 7.02 5.36 6.33 7.06 6.55	0.07 NS NS 0.14 0.85 0.20 0.45 0.24 0.47 0.58 0.75	-90.1 NS NS -149 -38.2 -236 -139 -105 1.6 -89.9 -41.3	14.70 NS NS 15.29 14.42 13.34 12.54 15.87 14.60 11.38 13.70	NM NS NS 0.83 1.06 1.52 8.03 5.96 3.58 5.97 6.51	3.416 NS NS 2.637 4.179 5.159 4.068 3.939 4.079 4.156 3.741	clear NS NS clear
PL2-008C	4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	10/20/09 1/20/10 4/20/10 7/21/10 10/21/10 1/18/11 4/18/11	11:01 10:04 14:11 14:22 7:19 13:33 12:50	9.40 7.09 NM 11.90 11.48 8.80 11.67	1.6 2.2 1.5 1.4 2.9 1.5 2.0	7.88 7.92 7.75 7.71 7.97 8.32 7.41	0.89 0.22 0.51 0.43 0.85 0.40 0.45	17.3 -230 40.0 -196 31.8 -118 -106	14.15 13.38 14.29 17.89 13.69 12.74 13.64	0.79 0.45 0.19 0.88 3.03 0.91 0.87	5.781 4.550 5.824 6.012 6.032 6.000 5.960	clear clear clear clear, colorless clear clear clear, yellow
PL2-010A	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	9/2/08 NS NS 7/20/09 10/21/09 1/19/10 4/22/10 7/21/10 10/18/10 1/19/11 4/21/11	11:35 NS NS 11:34 11:10 10:20 8:45 11:18 14:00 9:37 8:27	10.22 NS NS 10.42 9.59 8.26 9.14 10.92 10.98 8.90 9.98	2.7 NS NS 1.5 2.3 2.9 1.5 1.1 3.0 2.0 2.2	4.00 NS NS 5.87 5.68 5.16 5.29 4.87 7.05 6.20 6.07	0.20 NS NS 0.18 0.68 0.42 0.51 0.31 0.34 0.78 2.43	126 NS NS 88.1 89.3 137 86.0 -39.6 -15.4 -25.3	14.99 NS NS 15.73 15.20 15.16 13.93 16.23 16.09 14.19 12.56	6.15 NS NS 0.36 1.14 2.55 1.49 2.64 4.98 8.74 8.18	3.768 NS NS 2.297 2.709 2.585 3.859 1.975 1.873 1.267 0.976	clear NS NS clear
PL2-017A	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	8/27/08 1/21/09 4/21/09 7/21/09 10/19/09 1/19/10 4/20/10 7/20/10 10/20/10 1/17/11 4/19/11	11:20 13:20 14:05 8:24 14:11 11:10 8:35 11:55 12:11 13:19	10.28 9.41 10.57 10.30 9.33 7.96 8.90 10.70 11.60 8.42 9.80	5.2 4.2 3.2 3.5 1.9 3.5 1.4 2.8 2.5 4.4 2.5	6.26 6.20 6.71 7.03 6.37 6.13 6.05 6.08 6.75 6.51 6.18	0.77 0.50 0.21 0.31 0.50 5.61 0.63 0.18 0.50 6.03 4.53	-118 22.0 -37.0 -20.1 -222 35.5 108 -209 -47.8 -23.1 106	16.90 8.50 9.87 14.42 16.13 9.00 10.36 15.25 17.32 7.39 9.34	45.8 22.0 1.10 0.16 0.63 7.03 1.26 0.23 4.22 9.83 5.84	15.71 0.150 1.582 9.234 14.72 0.498 5.271 6.111 6.646 0.453 0.87	clear
PL2-021A	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 9th Quarter 10th Quarter	8/27/08 1/21/09 4/20/09 7/21/09 10/19/09 1/18/10 4/19/10 7/20/10 10/20/10 1/18/11 4/19/11	10:13 10:25 12:04 11:46 12:44 11:15 12:00 15:00 8:41 9:15	11.09 10.52 11.42 11.01 10.27 9.05 9.82 11.58 11.59 9.55 10.46	4.5 7.5 4.0 5.0 2.7 0.9 1.5 2.2 2.7 2.0 2.0	4.02 5.20 6.07 8.23 5.74 6.16 6.21 6.03 6.34 6.59 6.44	0.65 2.00 0.18 0.11 0.69 0.22 0.30 0.12 0.87 0.49 0.7	931 -117 -124 -129 -108 -147 -143 -155 -67.3 -133 -78.4	16.58 13.50 14.12 15.41 15.89 14.13 15.90 16.48 15.07 13.26 11.60	8.21 30.0 7.85 8.59 2.45 3.43 4.56 4.07 6.10 5.49 9.73	4.026 0.420 4.783 4.520 3.902 2.341 3.410 3.357 3.067 2.756 2.164	clear amber color clear slightly cloudy clear, odor clear clear clear clear clear clear clear
PL2-021B	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	9/2/08 NS NS 7/21/09 10/22/09 1/18/10 4/19/10 7/21/10 10/20/10 1/18/11 4/19/11	9:50 NS NS 12:44 8:51 12:16 13:22 9:23 9:29 10:37 8:55	10.84 NS NS 11.24 10.23 8.86 9.72 11.68 11.60 9.56 10.68	3.5 NS NS 2.6 3.0 3.0 2.0 1.6 1.7 1.9 3.4	5.65 NS NS 8.26 6.75 6.81 6.79 6.13 6.26 6.66 6.73	0.17 NS NS 0.10 1.06 0.21 0.38 0.16 0.59 0.61	-124 NS NS -52.0 -55.6 -129 -127 -164 -88.2 -177 -81.6	14.08 NS NS 15.27 13.94 13.99 15.34 14.67 14.10 12.96 13.00	8.30 NS NS 1.08 1.02 2.56 1.06 4.29 3.35 1.25 4.08	5.637 NS NS 4.926 9.293 7.241 6.660 5.367 9.369 8.494 7.373	clear NS NS clear

Table 1. 2-66 ERD IM Groundwater Field Parameter Summary

Well	Event	Date	Time	Depth to Water (feet)	Total Volume Purged (gallons)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Temperature (°C)	Turbidity (NTUs)	Specific Conductivity (mS/cm)	Comments
PL2-021C	Pagalina	9/2/08	10:23	11 15	4.0	E 09	0.13	245	14.61	9.87	23.94	alogr
PL2-021C	Baseline 1st Quarter	9/2/08 NS	10:23 NS	11.15 NS	4.0 NS	5.98 NS	0.13 NS	-215 NS	NS	9.87 NS	23.94 NS	clear NS
	2nd Quarter	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS
	3rd Quarter	7/21/09	13:20	11.99	2.1	8.79	0.05	-177	15.97	3.79		clear
	4th Quarter										22.83	
	5th Quarter	10/22/09	9:46	10.02	3.0	7.65	0.96	-166	14.62	8.31	22.83	clear
		1/18/10	12:48	9.02	1.9	7.36	0.21	-208	14.62	0.60	18.21	clear, bubbles
	6th Quarter	4/19/10	14:30	9.55	1.5	7.49	0.27	-237	16.88	3.62	22.66	clear
	7th Quarter	7/21/10	8:33	13.56	2.0	7.46	0.14	-256	15.19	3.53	23.25	clear, bubly
	8th Quarter	10/20/10	10:21	12.90	2.5	7.87	0.45	-167	15.04	3.69	23.07	clear
	9th Quarter	1/18/11	11:11	9.55	1.3	7.96	0.52	-174	13.00	2.87	23.26	clear
	10th Quarter	4/20/11	8:32	10.48	2.2	7.76	0.76	-181	13.88	8.87	23.07	clear
PL2-031A	Baseline	8/27/08	12:45	10.51	3.9	6.91	0.79	-73.2	14.68	6.69	2.002	clear
	1st Quarter	1/21/09	15:10	9.01	2.5	6.90	0.60	-71.0	13.10	3.65	0.220	clear
	2nd Quarter	4/21/09	11:21	10.28	1.9	6.90	0.14	-163	12.60	8.88	2.508	clear
	3rd Quarter	7/21/09	10:05	10.13	2.3	7.77	0.23	-5.10	14.15	0.68	1.901	clear
	4th Quarter	10/19/09	15:54	8.94			0.28					
	5th Quarter	1/20/10		7.24	2.1 1.5	6.75 7.32	0.28	-19.6 -136	14.56 13.96	9.64 1.51	1.960 1.644	clear
	6th Quarter		11:11 11:30									
		4/20/10	11:30	8.47	2.0	7.31	6.83	45.0	12.69	1.59	0.690	clear
	7th Quarter	7/21/10	12:58	10.45	2.4	7.07	0.42	-104	15.13	0.81	2.080	clear
	8th Quarter	10/20/10	14:22	10.41	2.5	7.52	0.65	-7.3	16.47	1.79	2.136	clear
	9th Quarter	1/18/11	11:55	8.27	2.0	7.97	0.55	-23.4	13.21	0.33	2.235	clear
	10th Quarter	4/20/11	12:10	9.44	1.6	7.96	0.52	-19.0	11.62	4.89	0.601	clear
PL2-032A	Baseline	8/27/08	8:14	10.86	4.0	4.79	0.67	588	15.68	7.48	2.598	clear
1 LZ-002/	1st Quarter	1/20/09	11:04	10.21	2.8	6.60	0.80	-103	12.20	14.39	0.260	amber color
	2nd Quarter	4/20/09	10:45	11.22	3.3	6.64	0.28	-121	14.08	7.54	2.624	clear
	3rd Quarter	7/20/09	8:52	10.84	4.0	6.78	0.35	-59.7	15.06	0.61	2.139	clear
	4th Quarter	10/19/09	11:07	10.04	4.3	6.26	0.62	-56.0	15.61	2.63	2.191	clear
	5th Quarter	1/18/10	9:32	8.70	4.0	6.61	0.62	-30.0 -78.5	13.69	4.25	1.634	clear
	6th Quarter	4/19/10	9:40	9.55	2.2	6.55	0.51	-76.5 -105	13.65	7.93	2.052	clear
	7th Quarter	7/20/10	10:29	11.36	2.0	6.51	0.30	-132	15.92	0.05	2.168	clear, colorless
	8th Quarter	10/20/10	13:55	11.35	2.0	7.08	0.51	-85.0	17.11	1.24	2.077	clear
		1/17/11	11:00	9.30	2.6	6.51	0.73	-05.0 -142	13.09	6.19	1.722	clear
	9th Quarter				2.3		1.22		12.02	7.82		
	10th Quarter	4/20/11	11:01	10.35	2.3	7.00	1.22	-56.0	12.02	1.02	2.366	clear
PL2-035A	Baseline	9/2/08	12:55	10.40	6.0	6.31	0.07	-59.2	15.38	8.13	3.221	clear
	1st Quarter	1/20/09	12:49	9.82	2.8	6.60	0.90	-168	14.40	3.36	0.320	clear
	2nd Quarter	4/21/09	9:15	11.08	3.2	6.42	0.18	-119	14.46	9.84	3.824	clear
	3rd Quarter	7/20/09	10:25	10.81	2.0	6.97	0.14	-62.4	15.75	0.96	2.686	clear
	4th Quarter	10/20/09	15:16	9.75	3.3	6.68	0.79	-59.6	15.44	4.19	3.039	clear
	5th Quarter	1/18/10	14:47	8.75	3.0	6.46	0.18	-104	15.15	9.49	2.388	clear
	6th Quarter	4/21/10	9:37	9.29	1.7	6.62	0.30	-116	13.75	2.67	2.887	clear
	7th Quarter	7/21/10	11:57	11.32	1.1 2.5	6.36	0.31	-122	16.59	6.43	2.831	clear
	8th Quarter 9th Quarter	10/18/10	14:27	11.22		6.49	0.35	-20.9	16.37	3.14	2.876	clear
	10th Quarter	1/19/11 4/21/11	10:22 9:07	9.09 10.39	2.5 2.2	6.44 6.54	0.46 0.79	-98.9 -18.9	15.09 13.68	1.53 3.69	2.746 2.568	clear
PP-1B-I	Baseline 1st Quarter	9/3/08 NS	8:46 NS	11.20 NS	3.2 NS	6.88 NS	0.08 NS	110 NS	14.36 NS	7.13 NS	8.568 NS	clear NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS NS	NS
	3rd Quarter	7/21/09	14:03	11.43	2.4	8.20	0.07	-36.5	16.26	1.02	7.495	clear
	4th Quarter	10/21/09	15:49	10.41	2.2	6.99	0.76	-205	14.62	2.99	13.84	clear
	5th Quarter	1/18/10	10:35	9.09	2.0	6.05	0.26	-247	12.67	4.24	11.70	clear, bubbly
	6th Quarter	4/19/10	10:50	9.96	2.0	6.45	1.41	-109	14.36	1.55	13.59	clear
	7th Quarter	7/20/10	14:22	11.83	2.5	6.34	0.16	-230	15.72	0.86	14.02	clear, colorless
	8th Quarter	10/20/10	10:58	11.80	2.5	6.57	0.47	-261	15.28	3.48	12.66	clear
	9th Quarter	1/18/11	8:34	9.73	1.5	6.46	0.74	-161	11.70	5.49	12.66	clear
	10th Quarter	4/19/11	7:43	10.81	3.0	6.59	0.71	-78.2	12.91	12.7	11.87	bubbly, odor
PP-2B-I	Baseline	9/3/08	10:03	10.10	4.5	7.05	0.05	29.9	15.55	9.43	5.037	clear
	1st Quarter	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS
	2nd Quarter	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS NS	NS
	3rd Quarter	7/20/09	11:04	12.34	2.2	6.96	0.11	-61.7	16.18	8.88	4.296	clear
	4th Quarter	10/20/09	14:17	9.39	3.0	6.98	0.80	-70.0	14.88	4.49	4.178	clear
	5th Quarter	1/19/10	9:33	6.63	2.2	6.74	0.21	-117	14.11	1.24	4.098	clear
	6th Quarter	4/21/10	10:30	8.82	1.9	6.78	0.46	-122	12.90	3.47	6.151	clear
	7th Quarter	7/22/10	10:33	12.56	1.9	6.65	0.27	-137	15.41	2.25	4.913	clear, colorless
	8th Quarter	10/21/10	8:50	12.00	2.2	6.98	1.07	-62.3	14.56	2.85	4.806	clear
	9th Quarter	1/19/11	11:19	8.92	1.5	6.96	0.52	-99.6	13.30	4.27	4.324	clear
	10th Quarter	4/21/11	10:15	12.07	2.7	6.84	0.78	-59.6	13.81	9.29	4.896	clear

Table 1. 2-66 ERD IM Groundwater Field Parameter Summary

Well	Event	Date	Time	Depth to Water (feet)	Total Volume Purged (gallons)	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Temperature (°C)	Turbidity (NTUs)	Specific Conductivity (mS/cm)	Comments
PP-2B-O	4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	10/20/09 1/19/10 4/21/10 7/22/10 10/21/10 1/19/11 4/21/11	13:30 8:56 11:11 9:53 8:11 10:55 11:06	9.04 7.44 8.40 13.83 12.81 8.82	2.1 3.0 1.5 1.8 2.1 1.5	6.83 6.72 6.73 6.49 6.92 6.75 7.03	1.06 0.34 0.37 0.29 1.08 0.50 1.03	-49.4 -110 -115 -126 -49.4 -96.0 17.4	15.24 14.09 12.93 14.99 14.50 13.79 14.54	2.83 2.27 1.75 1.12 1.53 1.21 8.62	3.732 3.021 3.717 3.633 3.435 3.399 3.336	clear, slightly gray clear clear clear, bubbly, colorless clear clear
PP-3A-I	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 9th Quarter 10th Quarter	9/2/08 1/21/09 4/21/09 7/20/09 10/21/09 1/19/10 4/22/10 7/21/10 10/18/10 1/19/11 4/20/11	15:15 14:25 9:56 12:01 12:27 14:00 10:06 9:59 13:00 8:30 13:29	10.92 9.52 10.78 10.51 9.53 8.13 9.02 10.96 10.92 8.82 9.98	4.3 2.8 2.2 2.0 2.1 2.2 1.2 1.0 1.7 1.9 2.5	6.05 6.40 6.29 6.89 7.09 6.95 7.06 6.72 7.16 6.87 7.05	0.04 0.60 0.16 0.07 0.44 0.10 0.31 0.19 0.23 0.65 1.09	-61.6 7.0 -4.9 -23.8 19.5 -97.3 -62.6 -201 -218 -71.6 -60.2	14.01 13.80 13.99 14.63 14.84 14.77 13.25 14.36 15.72 13.56 13.68	7.31 1.46 4.56 1.75 1.68 1.38 1.59 1.36 2.46 2.07 5.80	2.722 0.190 2.692 2.238 2.129 1.748 2.289 2.865 2.578 2.560 3.079	clear
PP-3B-I	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	9/2/08 NS NS 7/20/09 10/21/09 1/20/10 4/22/10 7/21/10 10/18/10 1/19/11 4/20/11	15:59 NS NS 13:13 13:41 8:44 9:35 10:38 12:30 9:04 14:00	11.04 NS NS 10.75 9.44 7.94 8.92 11.28 11.01 8.77	4.5 NS NS 3.3 5.1 4.5 1.9 1.4 2.2 1.3	6.06 NS NS 8.01 7.54 6.91 6.64 7.25 7.18 6.90 7.26	0.03 NS NS 0.20 0.35 0.27 0.39 0.18 0.30 0.55	-95.4 NS NS -262 -285 -311 -62.9 -256 -250 -207 -66.9	14.11 NS NS 15.12 13.95 13.28 13.10 14.73 15.01 13.09 13.88	22.70 NS NS 1.01 0.44 1.70 1.21 2.92 1.89 5.44 9.13	9.979 NS NS 9.315 11.32 9.271 13.55 11.07 13.82 12.20 11.19	clear NS NS clear clear, gray clear
PP-4B-I	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	9/3/08 1/20/09 4/21/09 7/20/09 10/21/09 1/18/10 4/21/10 7/22/10 10/21/10 1/19/11 4/18/11	11:00 12:01 10:45 9:52 9:35 13:31 13:25 9:11 10:10 12:11 14:14	10.25 9.57 11.49 10.80 9.45 7.70 8.92 12.30 11.83 8.92 11.57	4.1 2.2 2.6 2.7 1.7 3.5 2.0 1.0 2.0 2.0 2.0	6.85 6.70 6.96 7.09 6.96 6.54 6.81 6.41 6.84 6.76	0.06 0.70 0.11 0.28 0.64 0.15 0.50 0.32 0.63 0.53 0.59	42.3 -134 -280 -52.1 -60.3 -112 -108 -160 -59.0 -95.4 -62.6	16.28 14.00 16.12 15.83 15.43 14.99 13.33 15.73 15.41 14.52 14.59	8.68 3.38 5.41 0.09 1.01 0.24 3.43 1.74 2.21 1.96 NM	3.749 0.540 4.639 2.997 3.411 4.204 4.049 4.447 4.366 5.079 4.222	clear
PP-4B-O	4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	10/21/09 1/18/10 4/21/10 7/22/10 10/21/10 1/19/11 4/18/11	9:03 14:01 12:21 8:35 9:23 12:54 14:47	9.09 6.80 8.46 13.39 12.51 8.75	2.4 1.4 1.5 1.3 2.1 2.0 2.0	6.76 6.51 6.82 5.68 6.20 6.58 6.76	0.82 0.27 0.42 0.29 0.70 0.43 0.58	-56.9 -85.8 -89.1 -131 -45.7 -118 -63.0	15.49 15.46 12.99 15.62 15.32 14.01 15.23	1.57 1.07 3.89 2.17 7.35 2.87 1.89	3.455 5.253 5.306 5.639 4.078 5.09 4.366	clear clear clear clear, colorless clear clear
PP-5B-I	Baseline 1st Quarter 2nd Quarter 3rd Quarter 4th Quarter 5th Quarter 6th Quarter 7th Quarter 8th Quarter 9th Quarter 10th Quarter	9/3/08 NS NS 7/20/09 10/21/09 1/19/10 4/20/10 7/20/10 10/20/10 1/17/11 4/20/11	12:05 NS NS 13:40 14:41 13:01 10:09 13:33 13:12 12:22 10:16	10.50 NS NS 10.88 9.50 7.95 9.03 11.32 11.05 8.85 10.12	2.5 NS NS 1.5 2.5 5.7 2.5 2.0 5.0 5.8 5.4	6.95 NS NS 8.40 8.16 7.01 7.09 7.03 7.30 7.05 7.30	0.02 NS NS 0.13 0.42 0.23 3.24 0.40 1.01 0.60 0.42	77.9 NS NS -180 -170 -113 36.6 -120 -75.0 -153 -70.1	14.47 NS NS 15.09 14.95 14.35 13.78 15.25 15.39 13.99 13.20	7.92 NS NS 0.31 0.93 0.68 1.35 2.41 1.13 2.08 5.41	15.25 NS NS 0.400 0.492 15.19 0.252 0.276 17.23 12.93 17.41	clear NS NS clear

Notes:

°C = degrees Celsius
mg/L = milligrams per liter
mS/cm = milliSiemens per centimeter
mV = millivolt

NM = not measured NS = not sampled NTU = nephlometric turbidity units ORP = oxidation-reduction potential

Table 2. 2-66 ERD IM Ninth Quarter Groundwater Monitoring Analytical Results (January 2011)

Well	Date		Chlorinat (µց	ted VOCs J/L)	3	TOC (mg/L)	Diss	solved Ga (μg/L)	ses	Ferrous Iron		ions g/L)		letals μg/L)			•	ic Acids g/L)			Bacterial Census
		PCE	TCE	DCE	VC	(IIIg/L)	Methane	Ethane	Ethene	(mg/L)	NO ₃	SO ₄	Arsenic	Manganese	Pyruvic	Lactic	Formic	Acetic	Propionic	Butyric	(cells/ml)
PL2-041AA	1/18/11	<0.6	56	129	1.0	NS	NS	NS	NS	NS	NS	NS	2.8	43	NS	NS	NS	NS	NS	NS	NS
PL2-008B	1/18/11	<0.2	2.3	2.1	1.8	4.84	NS	NS	NS	NS	NS	NS	<0.5	732	NS	NS	NS	NS	NS	NS	NS
PL2-008C	1/18/11	<0.2	<0.2	<0.2	<0.2	NS	NS	NS	NS	NS	NS	NS	5.0	44	NS	NS	NS	NS	NS	NS	NS
PL2-010A	1/19/11	<4.0	850	150	7.2	8.75	NS	NS	NS	NS	NS	NS	2.8	615	NS	NS	NS	NS	NS	NS	NS
PL2-017A	1/17/11	<0.2	1.2	<0.2	<0.2	3.78	<0.7	<1.2	<1.1	0.137	0.4	19.1	0.4	3	<10 M	<25	ND	<1	0.5 J	<1	1.90 J
PL2-021A	1/18/11	<1.0	8.4	107	64	278	4,330	6.1	1,720	288	<0.1	0.6	17.2	1,430	<10 M	<25 M	ND	420	40	29	212,000
PL2-021A (dup)	1/18/11	<2.0	8.8	110	62	290	4,780	6.7	1,910	288	0.2	<0.1	16.8	1,430	<10 M	<25 M	ND	420	42	25	307,000
PL2-021B	1/18/11	<0.2	0.8	2.5	3.7	8.43	NS	NS	NS	NS	NS	NS	2	553	NS	NS	NS	NS	NS	NS	NS
PL2-021C	1/18/11	<0.2	<0.2	0.3	0.6	48.4	NS	NS	NS	NS	NS	NS	3	352	NS	NS	NS	NS	NS	NS	NS
PL2-031A	1/18/11	<0.2	0.4	0.7	<0.2	5.32	35.3	<1.2	<1.1	0.838	<0.1	58.8	7	97	1.3 JM	<25 M	ND	12	1.4	<1	NS
PL2-032A	1/17/11	<0.2	<0.2	0.6	1.1	11.9	14,600	170	<1.1	30.4	<0.1	8.9	1.8	1,250	<10 M	<25	ND	<1	<1	<1	NS
PL2-035A	1/19/11	<4.0	<4.0	155	620	5.68	26,400	15.2	46.8	44.6	NS	NS	0.8	846	NS	NS	NS	NS	NS	NS	NS
PP-1B-I	1/18/11	<0.2	<0.2	0.5	0.3	1,260	NS	NS	NS	NS	NS	NS	2	1,720	NS	NS	NS	NS	NS	NS	NS
PP-2B-I	1/19/11	<0.2	<0.2	0.6	0.4	3.03	NS	NS	NS	NS	NS	NS	2.4	468	NS	NS	NS	NS	NS	NS	NS
PP-2B-I (dup)	1/19/11	<0.2	<0.2	0.5	0.4	3.00	NS	NS	NS	NS	NS	NS	1	517	NS	NS	NS	NS	NS	NS	NS
PP-2B-O	1/19/11	<0.2	<0.2	0.3	1.8	NS	NS	NS	NS	NS	NS	NS	0.8	742	NS	NS	NS	NS	NS	NS	NS
PP-3A-I	1/19/11	<0.2	0.9	2.4	0.4	6.26	NS	NS	NS	NS	NS	NS	2.0	430	NS	NS	NS	NS	NS	NS	NS
PP-3B-I	1/19/11	<0.2	<0.2	0.4	<0.2	2.56	NS	NS	NS	NS	NS	NS	3	643	NS	NS	NS	NS	NS	NS	NS
PP-4B-I	1/19/11	<0.2	<0.2	0.4	0.4	2.36	NS	NS	NS	NS	NS	NS	1	452	NS	NS	NS	NS	NS	NS	NS
PP-4B-O	1/19/11	<0.2	0.2	0.3	0.3	NS	NS	NS	NS	NS	NS	NS	1	726	NS	NS	NS	NS	NS	NS	NS
PP-5B-I	1/17/11	<0.2	<0.2	2.1	<0.2	2.33	NS	NS	NS	NS	NS	NS	4	278	NS	NS	NS	NS	NS	NS	NS

< = not detected at the reporting limit indicated

J = estimated result

M = recovery/relative percent difference poor for matrix spike/matrix spike duplicate

ND = no data reported

NS = no sample submitted for this analysis

cells/ml = cells per milliliter

mg/L = milligrams per liter

μg/L = micrograms per liter

DCE = sum of cis-1,2-, trans-1,2-, and 1,1-dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

TOC = total organic carbon

VC = vinyl chloride

VOCs = volatile organic compounds

 NO_3 = nitrate ion

SO₄ = sulfate ion

Table 3. 2-66 ERD IM Tenth Quarter Groundwater Monitoring Analytical Results (April 2011)

Well	Date	(Chlorinat (µg	ed VOCs /L)	3	TOC (mg/L)	Diss	solved Ga (µg/L)	ses	Ferrous Iron		ions g/L)		letals µg/L)			_	c Acids g/L)			Bacterial Census
		PCE	TCE	DCE	VC	(mg/L)	Methane	Ethane	Ethene	(mg/L)	NO ₃	SO ₄	Arsenic	Manganese	Pyruvic	Lactic	Formic	Acetic	Propionic	Butyric	(cells/ml)
PL2-041AA	4/18/11	<1.0	74	121	2.4	NS	NS	NS	NS	NS	NS	NS	2.5	63	NS	NS	NS	NS	NS	NS	NS
PL2-008B	4/18/11	<0.2	5.0	3.2	2.5	6.53	NS	NS	NS	NS	NS	NS	<0.5	611	NS	NS	NS	NS	NS	NS	NS
PL2-008C	4/18/11	<0.2	<0.2	<0.2	<0.2	NS	NS	NS	NS	NS	NS	NS	2.8	44	NS	NS	NS	NS	NS	NS	NS
PL2-010A	4/21/11	<4.0	730	160	6.2	6.77	NS	NS	NS	NS	NS	NS	0.9	561	NS	NS	NS	NS	NS	NS	NS
PL2-017A	4/19/11	<0.2	1.5	<0.2	<0.2	2.49	<0.7	<1.2	<1.1	0.059	0.3	31.0	0.3	2	<10	<25	ND	<5	<5	<5	23.2
PL2-017 (dup)	4/19/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	54.5
PL2-021A	4/19/11	<2.0	5.0	312	390	258	5,530	27.9	2,360	191	<1.0	<1.0	13.5	1,060	<10	<25	ND	230	22	2.6 J	237,000
PL2-021B	4/19/11	<0.2	0.2	0.6	0.8	5.03	NS	NS	NS	NS	NS	NS	1.5	341	NS	NS	NS	NS	NS	NS	NS
PL2-021C	4/20/11	<0.2	<0.2	0.3	0.7	50.0	NS	NS	NS	NS	NS	NS	3	353	NS	NS	NS	NS	NS	NS	NS
PL2-031A	4/20/11	<0.2	20	4.7	<0.2	1.89	<0.7	<1.2	<1.1	0.047	0.2	16.9	1.7	<1	<10 M	<25	ND	<5	<5	<5	NS
PL2-032A	4/20/11	<0.2	<0.2	0.3	1.0	11.6	15,200	143	<1.1	26.8	0.1	0.5	0.6	1,190	<10 M	<25	ND	<5	<5	<5	NS
PL2-032A (dup)	4/20/11	<0.2	<0.2	0.3	0.9	11.7	14,700	137	<1.1	26.8	<0.1	0.5	0.6	1,140	<10 M	<25	ND	<5	<5	<5	NS
PL2-035A	4/21/11	<10	<10	410	900	5.90	9,030	3.0	18.9	36.9	NS	NS	<1	921	NS	NS	NS	NS	NS	NS	NS
PP-1B-I	4/19/11	<0.2	<0.2	<0.2	<0.2	364	NS	NS	NS	NS	NS	NS	<1	1,110	NS	NS	NS	NS	NS	NS	NS
PP-2B-I	4/21/11	<0.2	0.2	0.3	0.5	2.65	NS	NS	NS	NS	NS	NS	1	656	NS	NS	NS	NS	NS	NS	NS
PP-2B-I (dup)	4/21/11	<0.2	<0.2	0.3	0.4	2.55	NS	NS	NS	NS	NS	NS	<1	606	NS	NS	NS	NS	NS	NS	NS
PP-2B-O	4/21/11	<0.2	<0.2	0.2	1.0	NS	NS	NS	NS	NS	NS	NS	<1	741	NS	NS	NS	NS	NS	NS	NS
PP-3A-I	4/20/11	<0.2	0.9	6.9	3.0	5.28	NS	NS	NS	NS	NS	NS	1.3	711	NS	NS	NS	NS	NS	NS	NS
PP-3B-I	4/20/11	<0.2	0.3	24	2.5	2.91	NS	NS	NS	NS	NS	NS	2	619	NS	NS	NS	NS	NS	NS	NS
PP-4B-I	4/18/11	<0.2	<0.2	0.3	0.3	3.64	NS	NS	NS	NS	NS	NS	<0.5	298	NS	NS	NS	NS	NS	NS	NS
PP-4B-O	4/18/11	<0.2	<0.2	0.4	0.4	NS	NS	NS	NS	NS	NS	NS	<0.5	455	NS	NS	NS	NS	NS	NS	NS
PP-5B-I	4/20/11	<0.2	<0.2	1.7	<0.2	1.94	NS	NS	NS	NS	NS	NS	<1	274	NS	NS	NS	NS	NS	NS	NS

< = not detected at the reporting limit indicated

J = estimated result

M = recovery/relative percent difference poor for matrix spike/matrix spike duplicate

ND = no data reported

NS = no sample submitted for this analysis

cells/ml = cells per milliliter mg/L = milligrams per liter

μg/L = micrograms per liter

DCE = sum of cis-1,2-, trans-1,2-, and 1,1-dichloroethene

PCE = tetrachloroethene

TCE = trichloroethene

TOC = total organic carbon

VC = vinyl chloride

VOCs = volatile organic compounds

 NO_3 = nitrate ion

 SO_4 = sulfate ion

Table 4. 2-66 ERD IM Groundwater Monitoring Analytical Data Summary

		_ ,	(Chlorinat		6	TOC	Diss	olved Gas	ses	Ferrous Iron		nions		letals			Organi				Bacterial
Well	Event	Date	PCE	(μg TCE	/L) DCE	VC	(mg/L)	Methane	(µg/L) Ethane	Ethene	(mg/L)	NO₃	ng/L) SO₄	Arsenic (µg/L) Manganese	Pyruvic	Lactic	Formic	g/L) Acetic	Propionic	Butyric	Census (cells/ml)
PL2-041AA	4th Quarter	10/20/09	<1.2	220	277	4.0	NS	NS	NS	NS	NS	NS NS	NS	4.1	48	NS	NS	NS	NS	NS	NS	NS
1 12-04 177	5th Quarter	1/20/10	<2.0	91	214	3.1	NS	NS NS	NS	NS	NS NS	NS	NS	3.7	53	NS	NS	NS	NS	NS	NS	NS NS
	6th Quarter	4/20/10	<0.2	83	181	2.6	NS	NS	NS	NS	NS	NS	NS	2.6	56	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<1.0	85	127	1.6	NS	NS	NS	NS	NS	NS	NS	2.2	60	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/20/10	<0.2	61	140	1.0	NS	NS	NS	NS	NS	NS	NS	2.5	62	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/18/11	<0.6	56	129	1.0	NS	NS	NS	NS	NS	NS	NS	2.8	43	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/18/11	<1.0	74	121	2.4	NS	NS	NS	NS	NS	NS	NS	2.5	63	NS	NS	NS	NS	NS	NS	NS
PL2-008B	Baseline	9/2/08	<1.0	<1.0	5.8	46 NO	3.07	NS	NS	NS	NS	NS	NS	NS	NS	NS NO	NS	NS	NS	NS	NS	NS
	1st Quarter 2nd Quarter	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	3rd Quarter	7/20/09	<0.2	0.2	NS 1.3	2.9	5.45	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	3rd Quarter	7/20/09	<0.2	0.2	1.2	2.9	5.45	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/20/09	<0.2	0.4	1.1	1.9	3.59	NS	NS	NS	NS	NS	NS	0.6	724	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/20/10	<0.2	0.3	0.6	1.2	2.77	NS	NS	NS	NS	NS	NS	<0.5	860	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/21/10	< 0.2	0.5	0.7	1.6	2.08	NS	NS	NS	NS	NS	NS	<1	510	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<0.2	2.0	2.1	4.7	676	NS	NS	NS	NS	NS	NS	<2	2,740	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<0.2	2.0	2.0	4.8	710	NS	NS	NS	NS	NS	NS	<2	2,940	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/18/10	<0.2	1.6	2.0	1.5	10.2	NS	NS	NS	NS	NS	NS	< 0.5	792	NS NO	NS	NS	NS	NS	NS	NS
	8th Quarter	10/18/10	<0.2	1.6	2.0	1.6	9.23	NS NC	NS	NS	NS NS	NS	NS	<0.5	797	NS NC	NS	NS	NS	NS	NS	NS NS
	9th Quarter 10th Quarter	1/18/11 4/18/11	<0.2 <0.2	2.3 5.0	2.1 3.2	1.8 2.5	4.84 6.53	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<0.5 <0.5	732 611	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
PL2-008C	4th Quarter	10/20/09	<0.2	<0.2	0.4	0.9	NS	NS	NS	NS	NS NS	NS	NS	1	45	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/20/10	< 0.2	<0.2	<0.2	0.2	NS	NS	NS	NS	NS	NS	NS	3.1	49	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/20/10	<0.2	<0.2	<0.2	<0.2	NS	NS	NS	NS	NS	NS	NS	2	46	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<0.2	<0.2	0.3	<0.2	NS	NS	NS	NS	NS	NS	NS	2	46	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/21/10	<0.2	<0.2	0.7	0.7	NS	NS	NS	NS	NS	NS	NS	2.7	48	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/18/11	<0.2	<0.2	<0.2	<0.2	NS	NS	NS	NS	NS	NS	NS	5.0	44	NS NO	NS	NS	NS	NS	NS	NS
PL2-010A	10th Quarter Baseline	4/18/11 9/2/08	<0.2 <5.0	<0.2 590	<0.2 107	<0.2 <5.0	NS <1.5	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2.8 NS	44 NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
1 L2-010A	1st Quarter	9/2/00 NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/20/09	<5.0	860	89	<5.0	1.88	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/21/09	<6.0	520	86	6.6	<1.50	NS	NS	NS	NS	NS	NS	<0.5	747	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/19/10	<4.0	270	530	250	2.82	NS	NS	NS	NS	NS	NS	0.6	1,380	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/22/10	<3.0	90	1,719	660	<1.50	NS	NS	NS	NS	NS	NS	<0.5	1,090	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<5.0	620	280	42	2.38	NS	NS	NS	NS NC	NS	NS	<0.5	546	NS NC	NS	NS	NS	NS	NS	NS NC
	8th Quarter 9th Quarter	10/18/10 1/19/11	0.4 <4.0	920 850	338 150	60 7.2	8.80 8.75	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	1.5 2.8	138 615	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	10th Quarter	4/21/11	<4.0	730	160	6.2	6.77	NS	NS	NS	NS	NS	NS	0.9	561	NS	NS	NS	NS	NS	NS	NS NS
PL2-017A	Baseline	8/27/08	<0.2	1.6	0.3	<0.2	1.66	3.5	<1.2	<1.1	6.84	<10.0	655	<2	126	<4	<1	<1	<1	<1	<1	3.99
	Baseline	8/27/08	< 0.2	1.5	0.2	<0.2	1.51	3.1	<1.2	<1.1	6.84	<10.0	655	<2	125	<4	<1	<1	<1	<1	<1	NS
	1st Quarter	1/21/09	<0.2	2.1	0.2	<0.2	3.34	6.9	<1.2	<1.1	1.50	<0.1	52.7	<0.5	16	<4	<1	<1	<1	<1	<1	NS
	2nd Quarter	4/20/00	<0.2	0.7	<0.2	<0.2	3.39	<0.7	<1.2	<1.1	0.51	<0.1	49.5	0.5	6	<4	<1	<1	<1	<1	<1	NS
	3rd Quarter	7/21/09	<0.2	0.6	<0.2	<0.2	<1.50	4.6	<1.2	<1.1	3.98	<0.2	403	<1 NO	102	<10	<25	ND	<1 NO	<1	<1 NO	18.6
	3rd Quarter 4th Quarter	7/21/09 10/19/09	NS <0.2	NS 0.9	NS 0.2	NS <0.2	NS 1.94	NS 9.7	NS <1.2	NS <1.1	NS 0.702	NS <1.0	NS 576	NS <1	NS 30	NS <0.070 M	NS 0.066 J	NS ND	NS 0.050 J	NS <0.070	NS <0.070	7.70 17.5
	4th Quarter	10/19/09	NS	NS	NS	NS	NS	9.7 NS	NS	NS	0.702 NS	NS	NS	NS	NS	NS	0.000 J NS	NS	0.030 J NS	NS	\0.070 NS	3.50
	5th Quarter	1/19/10	<0.2	2.0	<0.2	<0.2	2.61	<0.7	<1.2	<1.1	0.117	1.8	33.4	0.6	3	<10	<25	ND	<1	<1	<1	6.30
	5th Quarter	1/19/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	2.50
	6th Quarter	4/20/10	<0.2	1.9	<0.2	<0.2	<1.50	<0.7	<1.2	<1.1	0.703	<0.1	216	<1	14	<10	<25 M	ND	<1.0	<1.0	<1.0	3.80
	6th Quarter	4/20/10	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	1.50
	7th Quarter	7/20/10	<0.2	1.5	<0.2	<0.2	8.84	6.9	<1.2	<1.1	5.94	<0.1	233	<0.5	54	<10 M	<25	ND	<1.0	<1.0	<1.0	15.6
	7th Quarter	7/20/10	NS 10.0	NS	NS	NS 10.2	NS 2.25	NS 50.0	NS	NS	NS 1.72	NS 10.1	NS	NS	NS 42	NS 110	NS 405 M	NS	NS	NS	NS	7.60
	8th Quarter 8th Quarter	10/20/10	<0.2 NS	2.3 NS	0.2	<0.2 NS	2.35 NS	52.2 NS	<1.2	<1.1	1.73 NS	<0.1	223 NS	2 NS	42 NS	<10	<25 M	ND NS	<1.0 NS	<1.0 NS	<1.0 NS	1.60
	9th Quarter	10/20/10 1/17/11	NS <0.2	NS 1.2	NS <0.2	NS <0.2	NS 3.78	NS <0.7	NS <1.2	NS <1.1	NS 0.137	NS 0.4	NS 19.1	NS 0.4	NS 3	NS <10 M	NS <25	NS ND	NS <1.0	0.5 J	NS <1.0	2.25 1.90 J
	10th Quarter	4/19/11	<0.2	1.5	<0.2	<0.2	2.49	<0.7	<1.2	<1.1	0.059	0.4	31.0	0.4	2	<10 W	<25	ND	<5	<5	<5	23.2
	10th Quarter	4/19/11	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	54.5
			_	•				-				-		-	•							

Table 4. 2-66 ERD IM Groundwater Monitoring Analytical Data Summary

Mall	Front	Dete	(ted VOC	S	тос	Dis	solved Ga	ses	Ferrous Iron		ions		Metals				c Acids			Bacterial
Well	Event	Date	PCE	TCE	g/L) DCE	VC	(mg/L)	Methane	(µg/L) Ethane	Ethene	(mg/L)	NO ₃	ig/L) SO₄	Arsenic	μg/L) Manganese	Pyruvic	Lactic	(mg	Acetic	Propionic	Butyric	Census (cells/ml)
PL2-021A	Baseline	8/27/08	4.0	2,700	870	35	9.40	6.6	<1.2	1.2	96.0	<5.0	73.0	0.9	2,840	<4	<1	<1	<1	<1	<1 <1	0.245 J
1 22 02 17 (1st Quarter	1/21/09	<300	310	3,800	<300	680	25.3	<1.2	2.6	560	<0.5	110	8.6	2,240	<4	33.1	2.4	346.9	43.3	501.6	NS
	2nd Quarter	4/20/09	<0.2	14	5,013	22	542	15.7	<1.2	<1.1	505	<0.5	1.3	15.9	2,250	<4	<1	<1	396.4	68.3	318.7	NS
	3rd Quarter	7/21/09	<20	<20	4,720	360	530	190	<1.2	10.2	479	<1.0	<0.5	14.0	1,930	<10	9.6	ND	380	66	260	6,800
	4th Quarter	10/19/09	<20	<20	1,000	11,000	473	253	<1.2	76.5	396	<0.5	8.0	13.2	1,530	6.6	2.2	ND	410	60	220	372,000
	5th Quarter	1/18/10	<20	<20	410	3,800	372	2,730	<1.2	433	406	<0.1	<1.0	15.1	1,560	28 J	<120	ND	750	100	110	2,200,000
	6th Quarter	4/19/10	<6.0	<6.0	256	730	290	6,230	<1.2	2,530	382	<1.0	<1.0	13.7	1,710	<10	<25 M	ND	430	75	43	6,840
	7th Quarter	7/20/10	<0.2	1.1	45	310	418	3,940	<1.2	2,500	358	<0.1	<0.5	16	1,760	<10 M	<25	ND	440	74	57	1,200,000
	8th Quarter	10/20/10	<3.0	<3.0	43	150	362	3,300	<1.2	1,710	336	<0.1	1.2	15.2	1,830	<10	<25 M	ND	500	61	43	72,500
	9th Quarter 9th Quarter	1/18/11 1/18/11	<1.0 <2.0	8.4 8.8	107 110	64 62	278 290	4,330	6.1 6.7	1,720	288 288	<0.1 0.2	0.6 <0.1	17.2 16.8	1,430 1,430	<10 M <10 M	<25 M <25 M	ND ND	420 420	40 42	29 25	212,000
	10th Quarter	4/19/11	<2.0 <2.0	5.0	312	390	258	4,780 5,530	27.9	1,910 2,360	191	<1.0	<1.0	13.5	1,430	<10 Wi	<25 W	ND	230	22	2.6 J	307,000 237,000
PL2-021B	Baseline	9/2/08	<0.2	<0.2	1.2	0.6	3.21	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
1 12 0210	1st Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/21/09	<0.2	<0.2	3.4	3.0	14.1	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/22/09	<0.2	<0.2	8.0	0.5	<1.50	NS	NS	NS	NS	NS	NS	<1	481	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/18/10	<0.2	<0.2	1.0	0.3	3.50	NS	NS	NS	NS	NS	NS	8.0	268	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/19/10	<0.2	<0.2	0.8	0.5	2.22	NS	NS	NS	NS	NS	NS	<0.5	231	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<0.2	2.4	6.4	3.6	200	NS	NS	NS	NS	NS	NS	<0.5	365	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/20/10	<0.2	0.7	7.4	7.8	37.9	NS	NS	NS	NS NC	NS	NS	1	702	NS	NS	NS	NS	NS	NS	NS NC
	9th Quarter 10th Quarter	1/18/11 4/19/11	<0.2 <0.2	0.8 0.2	2.5 0.6	3.7 0.8	8.43 5.03	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	2 1.5	553 341	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
PL2-021C	Baseline	9/2/08	<0.2	<0.2	0.0	0.6	48.8	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS NS
1 62-0210	1st Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/21/09	<0.2	<0.2	<0.2	0.7	43.6	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/22/09	<0.2	<0.2	<0.2	0.7	46.4	NS	NS	NS	NS	NS	NS	<2	359	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/18/10	<0.2	<0.2	<0.2	0.7	48.6	NS	NS	NS	NS	NS	NS	4	354	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/19/10	<0.2	<0.2	0.2	0.5	34.0	NS	NS	NS	NS	NS	NS	2	389	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<0.2	<0.2	<0.2	0.4	48.4	NS	NS	NS	NS	NS	NS	<2	399	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/20/10	<0.2	<0.2	<0.2	0.4	56.0	NS	NS	NS	NS NC	NS	NS	3	355	NS	NS	NS	NS	NS	NS	NS
	9th Quarter 10th Quarter	1/18/11 4/20/11	<0.2 <0.2	<0.2 <0.2	0.3 0.3	0.6 0.7	48.4 50.0	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3 3	352 353	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
PL2-031A	Baseline	8/27/08	<0.2	3.0	1.3	2.1	5.92	12.1	<1.2	<1.1	1.03	<1.0	73.7	NS	NS	<4	<1	<1	<1	<1	<1	NS NS
1 22 00 17 (1st Quarter	1/21/09	<0.2	2.0	2.3	1.5	6.26	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	4/21/09	<0.2	5.9	1.1	3.5	6.50	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/21/09	<0.2	7.2	2.8	<0.2	7.39	11.8	<1.2	<1.1	1.91	<0.1	64.5	NS	NS	<10	2.4	ND	<1	<1	<1	NS
	4th Quarter	10/19/09	<0.2	1.2	1.7	0.5	5.86	32.8	<1.2	<1.1	0.878	<0.5	75.5	7.0	65	<0.070 M	0.091 J	ND	0.030 J	<0.070	<0.070	NS
	4th Quarter	10/19/09	<0.2	1.0	1.5	0.6	6.11	39.0	<1.2	<1.1	0.907	< 0.5	74.6	7.3	65	<0.070 M	0.087 J	ND	0.038 J	<0.070	<0.070	NS
	5th Quarter	1/20/10	<0.2	0.4	0.9	0.2	8.43	285	<1.2	<1.1	0.677	<0.1	82.6	6.9	70	<10	<25	ND	<1.0	<1.0	<1.0	NS
	5th Quarter 6th Quarter	1/20/10	<0.2	0.3	0.9	0.2	8.38 4.12	291 14.7	<1.2 <1.2	<1.1 <1.1	0.685	<0.1 <0.1	78.8 70.8	7.5 4	70 75	<10 <10	<25 <25 M	ND ND	<1.0 <1.0	<1.0	<1.0 <1.0	NS NS
	6th Quarter	4/20/10 4/20/10	<0.2 <0.2	3.7 3.7	1.0 1.0	<0.2 <0.2	4.12	15.2	<1.2	<1.1 <1.1	0.674 0.631	<0.1	69.3	4	75 75	<10	2.6 JM	ND	<1.0	<1.0 <1.0	<1.0	NS NS
	7th Quarter	7/21/10	<0.2	0.6	0.4	2.6	6.35	7.1	<1.2	<1.1	2.72	<0.1	79.3	9	101	<10 M	<25	ND	<1.0	<1.0	0.8 J	NS NS
	8th Quarter	10/20/10	<0.2	6.8	1.4	<0.2	6.48	7.2	<1.2	<1.1	1.60	<0.1	86.9	5.4	100	<10	<25 M	ND	<1.0	<1.0	1.1	NS
	9th Quarter	1/18/11	<0.2	0.4	0.7	<0.2	5.32	35.3	<1.2	<1.1	0.838	<0.1	58.8	7	97	1.3 JM	<25 M	ND	12	1.4	<1.0	NS
	10th Quarter	4/20/11	<0.2	20	4.7	<0.2	1.89	<0.7	<1.2	>1.1	0.047	0.2	16.9	1.7	<1	<10 M	<25	ND	<5	<5	<5	NS
PL2-032A	Baseline	8/27/08	<10	<10	<10	900	10.8	3,190	295	557	28.6	<1.0	6.3	NS	NS	<4	<1	<1	<1	<1	<1	88.3
	1st Quarter	1/20/09	<0.2	<0.2	1.0	41	13.9	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1st Quarter	1/20/09	<1.0	<1.0	<1.0	43	12.7	NS	NS NS	NS	NS NS	NS NS	NS	NS	NS NC	NS	NS	NS	NS	NS	NS	NS NS
	2nd Quarter 2nd Quarter	4/20/09 4/20/09	<0.2 <0.2	<0.2 <0.2	0.6 0.6	13 13	23.0 20.6	NS NS	NS NS	NS NS	NS NS	NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	3rd Quarter	7/20/09	<0.2	<0.2	0.6	11	15.6	3,170	317	466	32.2	<0.1	0.2	NS	NS NS	<10	<25	ND	<1	<1	<1	NS NS
	3rd Quarter	7/20/09	<0.2	<0.2	0.6	11	17.5	3,120	285	429	31.4	<0.1	0.2	NS	NS	<10	<25	ND	<1	<1	<1	NS
	4th Quarter	10/19/09	<0.2	<0.2	0.9	14	14.4	4,380	306	323	30.3	<0.1	0.7	1.4	1,370	<0.070 M	0.100 J	ND	0.020 J	<0.070	<0.070	NS
	5th Quarter	1/18/10	<0.2	<0.2	0.6	3.0	14.4	10,400	332	24.7	22.4	< 0.1	0.3	1.5	1,280	<10	<25	ND	<1	<1	<1	NS NC
	6th Quarter 7th Quarter	4/19/10 7/20/10	<0.2 <0.2	<0.2 <0.2	0.4 0.4	1.3 1.6	9.54 12.9	11,700 6,920	296 227	<1.1 1.2	26.0 35.4	<1.0 <0.1	1.9 9.2	0.9 1.5	1,290 1,300	2.0 J <10 M	<25 M <25	ND ND	<1.0 <1.0	<1.0 <1.0	<1.0 0.8 J	NS NS
	7th Quarter	7/20/10	<0.2	<0.2	0.4	1.6	14.0	7,150	225	1.2	35.4 35.8	<0.1	9.5	< 0.5	1,300	<10 M	<25 <25	ND	<1.0	<1.0	<1.0	NS NS
	8th Quarter	10/20/10	<0.2	<0.2	0.7	2.3	11.3	5,920	168	4.0	0.59	<0.1	14.9	0.6	1,280	<10	<25 M	ND	0.6 J	<1.0	<1.0	NS
	8th Quarter	10/20/10	<0.2	<0.2	0.7	2.1	11.9	5,860	164	3.7	0.59	<0.1	13.8	0.7	1,240	1.3 J	<25 M	ND	<1.0	<1.0	<1.0	NS
	9th Quarter	1/17/11	<0.2	<0.2	0.6	1.1	11.9	14,600	170	<1.1	30.4	<0.1	8.9	1.8	1,250	<10 M	<25	ND	<1.0	<1.0	<1.0	NS
	10th Quarter	4/20/11	<0.2	<0.2	0.3	1.0	11.6	15,200	143	<1.1	26.8	0.1	0.5	0.6	1,190	<10 M	<25	ND	<5	<5	<5	NS
	10th Quarter	4/20/11	<0.2	<0.2	0.3	0.9	11.7	14700	137	<1.1	26.8	<0.1	0.5	0.6	1,140	<10 M	<25	ND	<5	<5	<5	NS

Table 4. 2-66 ERD IM Groundwater Monitoring Analytical Data Summary

			(Chlorinat		3	тос	Diss	solved Gas	ses	Ferrous Iron		ions		letals			Organi				Bacterial
Well	Event	Date	PCE	(µg	/L) DCE	VC	(mg/L)	Methane	(μg/L) Ethane	Ethene	(mg/L)	NO ₃	g/L) SO₄	Arsenic	ug/L) Manganese	Pyruvic	Lactic	Formic	g/L) Acetic	Propionic	Butyric	Census (cells/ml)
PL2-035A	Baseline	9/2/08	<100	<100	10,000	2,900	4.63	745	9.0	43.5	8.20	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1st Quarter	1/20/09	<250	<250	7,200	6,200	7.74	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	4/21/09	<0.2	4.2	9,950	6,200	6.04	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/20/09	<100	<100	6,400	3,000	6.84	9,080	44.5	225	50.5	NS	NS	NS 0.7	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter 5th Quarter	10/20/09 1/18/10	<12 <20	<12 <20	2,124 2,224	2,800 2,500	3.98 7.31	10,300 16,900	41.2 31.5	230 209	41.8 52.0	NS NS	NS NS	0.7 0.9	1,390 1,250	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	6th Quarter	4/21/10	<20	<20	1,822	2,700	4.17	14,800	35.0	273	55.5	NS	NS	<1	1,260	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<10	<10	1,115	1,600	5.36	16,100	42.0	107	44.8	NS	NS	2	1,170	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/18/10	<0.2	0.9	260	760	5.33	15,200	20.1	32.5	46.6	NS	NS	1.0	1,010	NS	NS	NS	NS	NS	NS	NS
	9th Quarter 10th Quarter	1/19/11 4/21/11	<4.0 <10	<4.0 <10	155 410	620 900	5.68 5.90	26,400 9,030	15.2 3.0	46.8 18.9	44.6 36.9	NS NS	NS NS	0.8 <1	846 921	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
PP-1B-I	Baseline	9/3/08	<0.2	<0.2	1.0	<0.2	3.12	9,030 NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS NS
	1st Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/21/09	<0.2	0.3	1.3	<0.2	4.94	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter 4th Quarter	10/21/09 10/21/09	<0.2 <0.2	<0.2 <0.2	12 13	3.0 4.0	78.0 77.6	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<2 <2	1,210 1,180	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	5th Quarter	1/18/10	<0.2	<0.2	6.2	2.5	8.78	NS	NS	NS NS	NS NS	NS	NS	2.5	1,950	NS	NS	NS	NS NS	NS NS	NS	NS NS
	5th Quarter	1/18/10	<0.2	<0.2	6.1	2.4	9.20	NS	NS	NS	NS	NS	NS	1.9	1,930	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/19/10	<0.2	<0.2	0.3	<0.2	5.20	NS	NS	NS	NS	NS	NS	<1	2,050	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/19/10	<0.2	<0.2	0.3	<0.2	4.90	NS	NS	NS	NS	NS	NS	1.4	2,010	NS	NS	NS	NS	NS	NS	NS
	7th Quarter 8th Quarter	7/20/10 10/20/10	<0.2 <0.2	<0.2 <0.2	0.6 0.7	<0.2 <0.2	212 168	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<2 <2	796 995	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	9th Quarter	1/18/11	<0.2	<0.2	<0.2	0.3	1,260	NS	NS	NS	NS	NS	NS	2	1,720	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/19/11	<0.2	<0.2	<0.2	<0.2	364	NS	NS	NS	NS	NS	NS	<1	1,110	NS	NS	NS	NS	NS	NS	NS
PP-2B-I	Baseline	9/3/08	<0.2	0.3	6.6	140	1.76	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1st Quarter	NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS NS	NS NS	NS	NS NS	NS NS	NS NC	NS	NS	NS	NS NS	NS NS	NS NC
	2nd Quarter 3rd Quarter	NS 7/20/09	NS <0.2	NS <0.2	NS 0.4	NS 1.4	136	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	4th Quarter	10/20/09	<0.2	0.4	0.3	1.1	18.2	NS	NS	NS	NS	NS	NS	<0.5	397	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/19/10	<0.2	<0.2	0.2	0.4	7.50	NS	NS	NS	NS	NS	NS	0.6	786	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/21/10	<0.2	<0.2	0.3	0.6	1.79	NS	NS	NS	NS	NS	NS	<1	784	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/22/10	<0.2	<0.2	0.3	0.6	2.58 3.94	NS NS	NS NS	NS	NS NS	NS	NS	<1	477 531	NS NS	NS	NS	NS	NS NS	NS NS	NS NC
	8th Quarter 9th Quarter	10/21/10 1/19/11	<0.2 <0.2	<0.2 <0.2	<0.2 0.6	0.2 0.4	3.94	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.6 2.4	531 468	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	9th Quarter	1/19/11	<0.2	<0.2	0.5	0.4	3.00	NS	NS	NS	NS	NS	NS	1	517	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/21/11	<0.2	0.2	0.3	0.5	2.65	NS	NS	NS	NS	NS	NS	1	656	NS	NS	NS	NS	NS	NS	NS
55.05.0	10th Quarter	4/21/11	<0.2	<0.2	0.3	0.4	2.55	NS	NS	NS	NS	NS	NS	<1	606	NS	NS	NS	NS	NS	NS	NS
PP-2B-O	4th Quarter 5th Quarter	10/20/09 1/19/10	<0.2 <0.2	<0.2 <0.2	0.5 <0.2	39 0.2	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<0.5 0.6	597 710	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	6th Quarter	4/21/10	<0.2	<0.2	<0.2	0.2	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	0.0 <1	710 792	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	7th Quarter	7/22/10	<0.2	<0.2	0.3	1.0	NS	NS	NS	NS	NS	NS	NS	<1	738	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/21/10	<0.2	<0.2	0.3	1.6	NS	NS	NS	NS	NS	NS	NS	<0.5	770	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/19/11	<0.2	<0.2	0.3	1.8	NS	NS	NS	NS	NS	NS	NS	0.8	742	NS	NS	NS	NS	NS	NS	NS
PP-3A-I	10th Quarter Baseline	4/21/11 9/2/08	<0.2 <0.2	<0.2 1.6	0.2 19.4	1.0 0.8	NS 3.29	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	<1 NS	741 NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
FF-SA-I	1st Quarter	1/21/09	<0.2	4.2	11.2	0.0	3.78	NS	NS	NS	NS NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	4/21/09	<0.2	2.6	5.4	0.5	4.73	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/20/09	<0.2	2.0	4.9	2.2	5.52	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/21/09	<0.2	2.0	12.1	0.2	4.76	NS NC	NS	NS	NS	NS	NS	2.7	321	NS	NS	NS	NS	NS NC	NS	NS NC
	5th Quarter 6th Quarter	1/19/10 4/22/10	<0.2 <0.2	2.3 2.1	4.5 5.7	<0.2 0.4	5.96 3.13	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	3.8 1.3	346 400	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS	NS NS
	7th Quarter	7/21/10	<0.2	1.5	21.8	20	29.0	NS	NS	NS	NS NS	NS	NS	<2	605	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/18/10	<0.2	0.6	3.2	0.9	28.4	NS	NS	NS	NS	NS	NS	2.7	623	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/19/11	<0.2	0.9	2.4	0.4	6.26	NS	NS	NS	NS	NS	NS	2.0	430	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/20/11	<0.2	0.9	6.9	3.0	5.28	NS	NS	NS	NS	NS	NS	1.3	711	NS	NS	NS	NS	NS	NS	NS
				1									L	L			<u> </u>	1		+		

Table 4. 2-66 ERD IM Groundwater Monitoring Analytical Data Summary

Well	Event	Date	(Chlorinat	ted VOC: ı/L)	s	тос	Diss	solved Ga: (μg/L)	ses	Ferrous Iron		ions a/L)		/letals µg/L)			Organi (mo				Bacterial Census
1.0		Julio	PCE	TCE	DCE	VC	(mg/L)	Methane	Ethane	Ethene	(mg/L)	NO ₃	SO₄	Arsenic	Manganese	Pyruvic	Lactic	Formic	Acetic	Propionic	Butyric	(cells/ml)
PP-3B-I	Baseline	9/2/08	<0.2	2.0	1.2	<0.2	2.14	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1st Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/20/09	<0.2	1.4	3.5	2.6	164	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/21/09	<0.2	0.6	1.5	1.3	48.0	NS	NS	NS	NS	NS	NS	<1	553	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/20/10	<0.2	<0.2	0.5	0.4	7.94	NS	NS	NS	NS	NS	NS	1.4	466	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/22/10	<0.2	<0.2	0.5	<0.2	1.60	NS	NS	NS	NS	NS	NS	<1	833	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/21/10	<0.2	<0.2	1.5	1.5	2.61	NS	NS	NS	NS	NS	NS	<1	737	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/18/10	<0.2	<0.2	0.5	<0.2	8.22	NS	NS	NS	NS	NS	NS	2	409	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/19/11	<0.2	<0.2	0.4	<0.2	2.56	NS	NS	NS	NS	NS	NS	3	643	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/20/11	<0.2	0.3	24	2.5	2.91	NS	NS	NS	NS	NS	NS	2	619	NS	NS	NS	NS	NS	NS	NS
PP-4B-I	Baseline	9/3/08	<0.2	5.9	1,300	830	1.97	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1st Quarter	1/20/09	<1.0	<1.0	17	51	41.3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	4/21/09	<0.2	2.5	37	120 E	84.8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/20/09	<10	<10	150	360	3.81	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/21/09	<1.0	<1.0	70	130	3.27	NS	NS	NS	NS	NS	NS	<0.5	548	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/18/10	<0.2	<0.2	11.2	27	4.70	NS	NS	NS	NS	NS	NS	<0.5	714	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/21/10	<0.2	<0.2	0.4	1.6	1.79	NS	NS	NS	NS	NS	NS	<1	431	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/22/10	<0.2	<0.2	<0.2	<0.2	43.4	NS	NS	NS	NS	NS	NS	<1	709	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/21/10	<0.2	<0.2	0.3	0.2	15.3	NS	NS	NS	NS	NS	NS	<0.5	545	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/19/11	<0.2	<0.2	0.4	0.4	2.36	NS	NS	NS	NS	NS	NS	1	452	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/18/11	<0.2	<0.2	0.3	0.3	3.64	NS	NS	NS	NS	NS	NS	<0.5	298	NS	NS	NS	NS	NS	NS	NS
PP-4B-O	4th Quarter	10/21/09	<0.2	2	14	45	NS	NS	NS	NS	NS	NS	NS	<0.5	217	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/18/10	<0.2	<0.2	1.7	6.2	NS	NS	NS	NS	NS	NS	NS	0.7	710	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/21/10	<0.2	<0.2	8.0	2.4	NS	NS	NS	NS	NS	NS	NS	<1	392	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/22/10	<0.2	0.2	0.9	1.4	NS	NS	NS	NS	NS	NS	NS	<1	1,370	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/21/10	<0.2	<0.2	4.6	20	NS	NS	NS	NS	NS	NS	NS	<0.5	1,210	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/19/11	<0.2	<0.2	0.3	0.3	NS	NS	NS	NS	NS	NS	NS	1	726	NS	NS	NS	NS	NS	NS	NS
	10th Quarter	4/18/11	<0.2	<0.2	0.4	0.4	NS	NS	NS	NS	NS	NS	NS	<0.5	455	NS	NS	NS	NS	NS	NS	NS
PP-5B-I	Baseline	9/3/08	<0.2	0.4	4.9	<0.2	1.77	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	Baseline	9/3/08	<0.2	0.4	4.8	<0.2	1.78	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1st Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	2nd Quarter	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3rd Quarter	7/20/09	<0.2	0.3	0.7	<0.2	3.59	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4th Quarter	10/21/09	<0.2	0.3	1.0	<0.2	<1.50	NS	NS	NS	NS	NS	NS	<0.5	56	NS	NS	NS	NS	NS	NS	NS
	5th Quarter	1/19/10	<0.2	0.2	2.3	<0.2	4.76	NS	NS	NS	NS	NS	NS	2	512	NS	NS	NS	NS	NS	NS	NS
	6th Quarter	4/20/10	<0.2	<0.2	0.6	<0.2	<1.50	NS	NS	NS	NS	NS	NS	0.2	23	NS	NS	NS	NS	NS	NS	NS
	7th Quarter	7/20/10	<0.2	<0.2	0.2	<0.2	<1.50	NS	NS	NS	NS	NS	NS	0.7	227	NS	NS	NS	NS	NS	NS	NS
	8th Quarter	10/20/10	<0.2	<0.2	2.8	<0.2	2.27	NS	NS	NS	NS	NS	NS	<2	323	NS	NS	NS	NS	NS	NS	NS
	9th Quarter	1/17/11	<0.2	<0.2	2.1	<0.2	2.33	NS	NS	NS	NS	NS	NS	4	278	NS	NS	NS	NS	NS	NS	NS
NOTES:	10th Quarter	4/20/11	<0.2	<0.2	1.7	<0.2	1.94	NS	NS	NS	NS	NS	NS	<1	274	NS	NS	NS	NS	NS	NS	NS

< = not detected at the value indicated

E = value greater than the linear range of the detector; sample dilution required

J = estimated result

M = recovery/relative percent difference poor for matrix spike/matrix spike duplicate

ND = no data reported

NS = no sample submitted for this analysis

cells/ml = cells per milliliter

mg/L = milligrams per liter μg/L = micrograms per liter DCE = sum of cis-1,2-, trans-1,2-, and 1,1-dichloroethene

PCE = tetrachloroethene TCE = trichloroethene

TOC = total organic carbon VC = vinyl chloride

VOCs = volatile organic compounds

 NO_3 = nitrate ion SO_4 = sulfate ion

Table 5. 2-66 ERD IM Overall Performance Summary

Well	Event	Date	Chlorinated VOCs (µg/L)				TOTAL Chlorinated	Percent Reduction in Total
			PCE	TCE	DCE	vc	VOCs (µg/L)	Chlorinated VOCs
PL2-041AA	4th Quarter	10/20/09	<1.2	220	277	4.0	501	61
	10th Quarter	4/18/11	<1.0	74	121	2.4	197.4	
PL2-008B	Baseline	9/2/08	<1.0	<1.0	5.8	46	51.8	79
	10th Quarter	4/18/11	<0.2	5.0	3.2	2.5	10.7	. •
PL2-008C	4th Quarter	10/20/09	<0.2	<0.2	0.4	0.9	1.3	100
	10th Quarter	4/18/11	<0.2	<0.2	<0.2	<0.2	0	
PL2-010A	Baseline	9/2/08	<5.0	590	107	<5.0	697	-29
	10th Quarter	4/21/11	<4.0	730	160	6.2	896	
PL2-017A	Baseline	8/27/08	<0.2	1.6	0.3	<0.2	1.8	
	Baseline	8/27/08	<0.2	1.5	0.2	<0.2		17
	10th Quarter	4/19/11	<0.2	1.5	<0.2	<0.2	1.5	
PL2-021A	Baseline	8/27/08	4.0	2,700	870	35	3,609	80
	10th Quarter	4/19/11	<2.0	5.0	312	390	707	
PL2-021B	Baseline	9/2/08	<0.2	<0.2	1.2	0.6	1.8	11
	10th Quarter	4/19/11	<0.2	0.2	0.6	0.8	1.6	
PL2-021C	Baseline	9/2/08	<0.2	<0.2	0.3	0.4	0.7	-43
	10th Quarter	4/20/11	<0.2	<0.2	0.3	0.7	1.0	.0
PL2-031A	Baseline	8/27/08	<0.2	3.0	1.3	2.1	6.4	83
	9th Quarter	1/18/11	<0.2	0.4	0.7	<0.2	1.1	
PL2-032A	Baseline	8/27/08	<10	<10	<10	900	900	
	10th Quarter	4/20/11	<0.2	<0.2	0.3	1.0	1.3	>99
	10th Quarter	4/20/11	<0.2	<0.2	0.3	0.9		
PL2-035A	Baseline	9/2/08	<100	<100	10,000	2,900	12,900	90
	10th Quarter	4/21/11	<10	<10	410	900	1,310	
PP-1B-I	Baseline	9/3/08	<0.2	<0.2	1.0	<0.2	1.0	100
	10th Quarter	4/19/11	<0.2	<0.2	<0.2	<0.2	0	
PP-2B-I	Baseline	9/3/08	<0.2	0.3	6.6	140	146.9	
	10th Quarter	4/21/11	<0.2	0.2	0.3	0.5	0.85	99
	10th Quarter	4/21/11	<0.2	<0.2	0.3	0.4		
PP-2B-O	4th Quarter	10/20/09	<0.2	<0.2	0.5	39	39.5	97
	10th Quarter	4/21/11	<0.2	<0.2	0.2	1.0	1.2	.
PP-3A-I	Baseline	9/2/08	<0.2	1.6	19.4	0.8	21.8	50
DD 22 :	10th Quarter	4/20/11	<0.2	0.9	6.9	3.0	10.8	
PP-3B-I	Baseline	9/2/08	<0.2	2.0	1.2	<0.2	3.2	88
DD 45.1	9th Quarter	1/19/11	<0.2	<0.2	0.4	<0.2	0.4	
PP-4B-I	Baseline	9/3/08	<0.2	5.9	1,300	830	2,136	>99
DD 12.0	10th Quarter	4/18/11	<0.2	<0.2	0.3	0.3	0.6	
PP-4B-O	4th Quarter	10/21/09	<0.2	2	14	45	61	99
	10th Quarter	4/18/11	<0.2	<0.2	0.4	0.4	0.8	
PP-5B-I	Baseline	9/3/08	<0.2	0.4	4.9	<0.2	5.25	00
	Baseline	9/3/08	<0.2	0.4	4.8	<0.2		68
	10th Quarter	4/20/11	<0.2	<0.2	1.7	<0.2	1.7	

Averaged 8th and 9th quarter data were used for wells PL2-031A and PP-3B-I to remove suspected amomalous sampling results Wells PL2-041AA, PL2-008C, PP-2B-O, and PP-4B-O used 4th Quarter data as baseline because these wells were added to the monitoring progam after the IM had started

< = not detected at the value indicated

FIGURES

ATTACHMENT A FIELD PARAMETER DATA

Table A1. Performance Monitoring - 9th Quarter Field Parameter Measurements (1/2011)

2-66 Sheetpile ERD IM

Well ID	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Temp (°C)	Turbidity (NTU)	Specific Conductance (mS/cm)	Depth to Water (ft)
PL2-041AA	8.17	0.56	-45.2	13.30	3.13	1.040	8.82
PL2-008B	7.06	0.58	-89.9	11.38	5.97	4.156	9.24
PL2-008C	8.32	0.40	-117.8	12.74	0.91	6.000	8.80
PL2-010A	6.20	0.78	-25.3	14.19	8.74	1.267	8.90
PL2-017A	6.51	6.03	-23.1	7.39	9.83	0.453	8.42
PL2-021A	6.59	0.49	-132.7	13.26	5.49	2.756	9.55
PL2-021B	6.66	0.61	-176.8	12.96	1.25	8.494	9.56
PL2-021C	7.96	0.52	-174.3	13.00	2.87	23.26	9.55
PL2-031A	7.97	0.55	-23.4	13.21	0.33	2.235	8.27
PL2-032A	6.51	0.73	-142.1	13.09	6.19	1.722	9.30
PL2-035A	6.44	0.46	-98.9	15.09	1.53	2.746	9.09
PP-1B-I	6.46	0.74	-160.9	11.70	5.49	12.66	9.73
PP-2B-I	6.96	0.52	-99.6	13.30	4.27	4.324	8.92
PP-2B-O	6.75	0.50	-96.0	13.79	1.21	3.399	8.82
PP-3A-I	6.87	0.65	-71.6	13.56	2.07	2.560	8.82
PP-3B-I	6.90	0.55	-207.4	13.09	5.44	12.20	8.77
PP-4B-I	6.76	0.53	-95.4	14.52	1.96	5.079	8.92
PP-4B-O	6.58	0.43	-118.2	14.01	2.87	5.090	8.75
PP-5B-I	7.05	0.60	-153.3	13.99	2.08	12.93	8.85

Notes:

ORP = oxidation-reduction potential, mv = millivolts NTU = nephlometric turbidity units mS/cm = milliSiemens per centimeter mV = millivolts

Table A2. Performance Monitoring - 10th Quarter Field Parameter Measurements (4/2011)

2-66 Sheetpile ERD IM

Well ID	рН	Dissolved Oxygen (mg/L)	ORP (mV)	Temp (°C)	Turbidity (NTU)	Specific Conductance (mS/cm)	Depth to Water (ft)
PL2-041AA	7.71	0.57	-33.0	12.36	1.63	0.927	9.88
PL2-008B	6.55	0.75	-41.3	13.70	6.51	3.741	10.52
PL2-008C	7.41	0.45	-106.2	13.64	0.87	5.960	11.67
PL2-010A	6.07	2.43	110.3	12.56	8.18	0.976	9.98
PL2-017A	6.18	4.53	106.0	9.34	5.84	0.870	9.80
PL2-021A	6.44	0.70	-78.4	11.60	9.73	2.164	10.46
PL2-021B	6.73	0.52	-81.6	13.00	4.08	7.373	10.68
PL2-021C	7.76	0.76	-180.7	13.88	8.87	23.07	10.48
PL2-031A	7.96	0.52	-19.0	11.62	4.89	0.601	9.44
PL2-032A	7.00	1.22	-56.0	12.02	7.82	2.366	10.35
PL2-035A	6.54	0.79	-18.9	13.68	3.69	2.568	10.39
PP-1B-I	6.59	0.71	-78.2	12.91	12.7	11.87	10.81
PP-2B-I	6.84	0.78	-59.6	13.81	9.29	4.896	12.07
PP-2B-O	7.03	1.03	17.4	14.54	8.62	3.336	13.86
PP-3A-I	7.05	1.09	-60.2	13.68	5.80	3.079	9.98
PP-3B-I	7.26	0.59	-66.9	13.88	9.13	11.19	10.24
PP-4B-I	6.77	0.59	-62.6	14.59	ND	4.222	11.57
PP-4B-O	6.76	0.58	-63.0	15.23	1.89	4.366	13.14
PP-5B-I	7.30	0.42	-70.1	13.20	5.41	17.41	10.12

Notes:

ORP = oxidation-reduction potential, mv = millivolts NTU = nephlometric turbidity units

mS/cm = milliSiemens per centimeter

mV = millivolts

ND = no data

ATTACHMENT B GROUNDWATER VOC ANALYTICAL DATA – ALL DETECTIONS

ENVIRONMENTAL PARTNERS INC

Table B1. 2-66 ERD Interim Measure Ninth Quarter - All VOC Detections

Groundwater - all results in μg/L

Constituent	Analytical Method	2011 TMCL	Laboratory Reporting Limit	PL2-041AA 1/18/11	PL2-008B 1/18/11	PL2-008C 1/18/11	PL2-010A 1/19/11	PL2-017A 1/17/11	PL2-021A 1/18/11	PL2-021A (dup) 1/18/11)	PL2-021B 1/18/11	PL2-021C 1/18/11	PL2-031A 1/18/11
Volatile Organic Compou	inds (VOCs)												
Vinyl chloride	EPA 8260C	2.4	0.2	1.0	1.8	<0.2	7.2	<0.2	64	62	3.7	0.6	<0.2
Chloroethane	EPA 8260C	NA	0.2	<0.6	<0.2	<0.2	<4.0	<0.2	<1.0	<2.0	<0.2	<0.2	<0.2
Acetone	EPA 8260C	NA	5.0	<15	<5.0	<5.0	<100	<5.0	1,300	1,300	7.9	<5.0	<5.0
1,1-Dichloroethane	EPA 8260C	NA	0.2	<0.6	<0.2	<0.2	<4.0	<0.2	9.3	9.3	<0.2	<0.2	<0.2
trans-1,2-Dichloroethene	EPA 8260C	NA	0.2	9.3	<0.2	<0.2	<4.0	<0.2	17	17	<0.2	0.3	<0.2
cis-1,2-Dichloroethene	EPA 8260C	130	0.2	120	2.1	<0.2	150	>0.2	90	93	2.5	<0.2	0.7
2-Butanone	EPA 8260C	NA	5.0	<15	<5.0	<5.0	<100	<5.0	530	560	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	EPA 8260C	NA	0.2	<0.6	<0.2	<0.2	<4.0	<0.2	2.8	2.8	<0.2	<0.2	<0.2
Trichloroethene	EPA 8260C	0.51	0.2	56	2.3	<0.2	850	1.2	8.4	8.8	0.8	<0.2	0.4
Benzene	EPA 8260C	2.0	0.2	<0.6	<0.2	<0.2	<4.0	<0.2	<1.0	<2.0	<0.2	<0.2	<0.2
Toluene	EPA 8260C	NA	0.2	<0.6	<0.2	<0.2	<4.0	<0.2	<1.0	<2.0	<0.2	<0.2	<0.2
Chlorobenzene	EPA 8260C	NA	0.2	<0.6	<0.2	<0.2	<4.0	<0.2	<1.0	<2.0	<0.2	<0.2	<0.2

Constituent	Analytical Method	2011 TMCL	Laboratory Reporting Limit	PL2-032A 1/17/11	PL2-035A 1/19/11	PP-1B-I 1/18/11	PP-2B-I 1/19/11	PP-2B-I (dup) 1/19/11	PP-2B-O 1/19/11	PP-3A-I 1/19/11	PP-3B-I 1/19/11	PP-4B-I 1/19/11	PP-4B-O 1/19/11	PP-5B-I 1/17/11
Volatile Organic Compou	inds (VOCs)													
Vinyl chloride	EPA 8260C	2.4	0.2	1.1	620.0	0.3	0.4	0.4	1.8	0.4	<0.2	0.4	0.3	<0.2
Chloroethane	EPA 8260C	NA	0.2	<0.2	<4.0	<0.2	<0.2	<0.2	0.3	<0.2	<0.2	<0.2	<0.2	<0.2
Acetone	EPA 8260C	NA	5.0	<5.0	<100	370	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloroethane	EPA 8260C	NA	0.2	1.2	4.8	0.5	0.3	0.2	1.8	0.6	<0.2	0.3	0.3	<0.2
trans-1,2-Dichloroethene	EPA 8260C	NA	0.2	<0.2	4.8	<0.2	<0.2	<0.2	<0.2	1.4	<0.2	<0.2	<0.2	0.4
cis-1,2-Dichloroethene	EPA 8260C	130	0.2	0.6	150	<0.2	0.6	0.5	0.3	1.0	0.4	0.4	0.3	1.7
2-Butanone	EPA 8260C	NA	5.0	<5.0	<100	120	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	EPA 8260C	NA	0.2	<0.2	<4.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	EPA 8260C	0.51	0.2	<0.2	<4.0	<0.2	<0.2	<0.2	<0.2	0.9	<0.2	<0.2	<0.2	<0.2
Benzene	EPA 8260C	2.0	0.2	0.2	<4.0	0.4	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	EPA 8260C	NA	0.2	0.2	<4.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	EPA 8260C	NA	0.2	1.4	<4.0	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

< = not detected at the listed reporting limit

μg/L= micrograms per liter NA = not applicable

Q = calibration out of control low

TMCL = Target Media Cleanup Level concentration

Table B2. 2-66 ERD Interim Measure Tenth Quarter - All VOC Detections

Groundwater - all results in µg/L

Constituent	Analytical Method	2011 TMCL	Laboratory Reporting Limit	PL2-041AA 4/18/2011	PL2-008B 4/18/2011	PL2-008C 4/18/2011	PL2-010A 4/21/2011	PL2-017A 4/19/2011	PL2-021A 4/19/2011	PL2-021B 4/19/2011	PL2-021C 4/20/2011	PL2-031A 4/20/2011	PL2-032A 4/20/2011	PL2-032A (dup) 4/20/2011
Volatile Organic Compou	ınds (VOCs)													
Vinyl chloride	EPA 8260C	2.4	0.2	2.4	2.5	<0.2	6.2	<0.2	390	0.8	0.7	<0.2	1.0	0.9
Chloroethane	EPA 8260C	NA	0.2	<1.0	<0.2	<0.2	<4.0	<0.2	<2.0	<0.2	<0.2	<0.2	1.4	1.3
Acetone	EPA 8260C	NA	5.0	<25	<5.0	<5.0	<100	<5.0	770	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloroethane	EPA 8260C	NA	0.2	<1.0	<0.2	<0.2	<4.0	<0.2	11	<0.2	<0.2	<0.2	0.6	0.6
trans-1,2-Dichloroethene	EPA 8260C	NA	0.2	11	<0.2	<0.2	<4.0	<0.2	22	<0.2	0.3	<0.2	<0.2	<0.2
cis-1,2-Dichloroethene	EPA 8260C	130	0.2	110	3.2	<0.2	160	<0.2	290	0.6	<0.2	4.7	0.3	0.3
2-Butanone	EPA 8260C	NA	5.0	<25	<5.0	<5.0	<100	<5.0	290	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	EPA 8260C	NA	0.2	<1.0	<0.2	<0.2	<4.0	<0.2	3.0	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	EPA 8260C	0.51	0.2	74	5.0	<0.2	730	1.5	5.0	0.2	<0.2	20	<0.2	<0.2
Benzene	EPA 8260C	2.0	0.2	<1.0	<0.2	<0.2	<4.0	<0.2	<2.0	<0.2	<0.2	<0.2	0.2	0.2
Chlorobenzene	EPA 8260C	NA	0.2	<1.0	<0.2	<0.2	<4.0	<0.2	<2.0	<0.2	<0.2	<0.2	1.4	1.3
o-Xylene	EPA 8260C	NA	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2

Constituent	Analytical Method	2011 TMCL	Laboratory Reporting Limit	PL2-035A 4/21/2011	PP-1B-I 4/19/2011	PP-2B-I 4/21/2011	PP-2B-I (dup) 4/21/2011	PP-2B-O 4/21/2011	PP-3A-I 4/20/2011	PP-3B-I 4/20/2011	PP-4B-I 4/18/2011	PP-4B-O 4/18/2011	PP-5B-I 4/20/2011
Volatile Organic Compou	inds (VOCs)												
Vinyl chloride	EPA 8260C	2.4	0.2	900	<0.2	0.5	0.4	1.0	3.0	2.5	0.3	0.4	<0.2
Chloroethane	EPA 8260C	NA	0.2	<10	0.2	<0.2	<0.2	0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Acetone	EPA 8260C	NA	5.0	<250	380	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1-Dichloroethane	EPA 8260C	NA	0.2	<10	0.4	<0.2	<0.2	1.4	1.2	<0.2	0.3	0.3	<0.2
trans-1,2-Dichloroethene	EPA 8260C	NA	0.2	<10	<0.2	<0.2	<0.2	<0.2	1.9	<0.2	<0.2	<0.2	0.3
cis-1,2-Dichloroethene	EPA 8260C	130	0.2	410	<0.2	0.3	0.3	0.2	5.0	24	0.3	0.4	1.4
2-Butanone	EPA 8260C	NA	5.0	<250	96	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0
1,1,1-Trichloroethane	EPA 8260C	NA	0.2	<10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Trichloroethene	EPA 8260C	0.51	0.2	<10	<0.2	0.2	<0.2	<0.2	0.9	0.3	<0.2	<0.2	<0.2
Benzene	EPA 8260C	2.0	0.2	<10	0.3	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Chlorobenzene	EPA 8260C	NA	0.2	<10	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	0.2	<0.2	<0.2
o-Xylene	EPA 8260C	NA	0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2

Notes:

< = not detected at the listed reporting limit

yg/L= micrograms per liter
NA = not applicable
Q = calibration out of control high for acetone
TMCL = Target Media Cleanup Level concentration

ATTACHMENT C FIELD NOTES

Boeing Plant 2, Seattle/Tukwila, Washington PLZ-032A Date Station U-110117-PLZ-032A-0 Field Team: (Initials) 36 + KA Sample: ID Field Conditions Cloudy & Winds **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Well Depth (ft.) Bladder Pump Peristaltic Pump Initial Depth to Water (ft.) 9.29 Other: : Depth of Water Column 1025 3 Casing Volumes Start Time 1 Casing Volume End Time 1107 Total Gallons Purged 2.6 30/lons Water ORP Level Appearance Time Gallons Hq Conductivity NTU Temp. 1.80 20 -77.1 12.58 AO 1.637 mS/cm 7.80 9.33 1031 167 45 1272 1034 1,634 nS/ 79.3 9.33 4 6.44 8 09 cleur 41 1,642 m/m 1,735 - 111,9 1037 775 12.89 8.23 cher 6.48 640 1.627 (12.89 1124,0 9,33 1040 1. 665mS cler 47 649 7,39 12.87 9.33 1043 -130.9 c lear 8 680 mg 1046 6.81 1.467 -134.1 49 933 Cler 1,0 12.92 1,25 = 1049 6.50 12.2 - 36.8 9-33 1 hor 17.99 8.11 -139.3 9.32 1.097 13.06 1059 1.4 6 51 7.21 -140.5 6,5 1.715 ms 6.1913 13.03 a 32 1055 1,6 0,93.7) 13,0A -142,1 9.32 1058 6.51 ales 1.8 Sample Information Peristaltic pump \ Submersible pump / Bladder Pump / Other Sample Method(s) Preservative/Filtration Comments Analysis Time **Bottle Type** (3) 40-mL VOA HCl, cool to 4°C Volatiles (8260B) 100 H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 1100 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C 1100 (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber 1100 (SM3500 Fe B-97) Anions (EPA 300.0) 1100 (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) 1100 HNO₃ to pH <2, cool to 4°C field filter, HNO₃ Metals (200.8&6010B) (1) 500 mL HDPE bio-flo&MI falcon tube cool to 4°C Census End Time 110 Comments / Exceptions: YES (NO. Presence of sinking product? YES / NO Presence of floating product?

Boeing Plant 2, Seattle/Tukwila, Washington Date Station 8P-5B-I Field Team: (Initials) Sample: ID 4-110117-PP-SB-I-10 XB + laA Field Conditions Cloude Winger Purge Information Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 8.82 Initial Depth to Water (ft.) Other: Depth of Water Column Start Time 1113 3 Casing Volumes **End Time** 1 Casing Volume Total Gallons Purged Water **ORP** Level Appearance DO Temp. NTU Time Gallons Conductivity -63,6 8.87 clew 14.03 7,30 2.10 1.9817 1130 136 m5/cm 75 1382 -63.9 8.91 14.03 21 0.162 mS/ex 193 men 1133 90 0.9479 -62.7 8.92 0.176 - 5% 7,91 14.67 Chev 7,29 1136 O. 77 03 14.08 8294 1.90 -61.5 chan 0, 19.4 ms/ 1.7 1139 8.96 7125 88 0.69 mg 14.08 -63.8 0.208 m 8 1142 1.5 7,24 2212 1.7 0.65 8 14.00 - 43.0 8.96 1145 2.62 8196 -11028 7.24 6,230 mS O 63 3 14,09 1148 1.9 6627 14,05 -118.9 8.97 220 1151 7,24 6.248 M,00 -123.1 721 0.612 897 0.757 7.24 1154 23 0.635 14.02 -12013 8,97 Cler 1.00 6,472 m 7.19 115 -140.4 96 12,69 1.88 0,62 = 14.01 9,00 121 4.7 0.62 2 13.97 -146.0 9.02 .83 .97 0/000 1214 4.9 7.01 12,89 6.62 2 13.98 -150.6 7.00 2.05 9,03 1217 5.1 <u>0.60</u>% -153,7 9.04 93 2.08 13,99 1220 5.3 Sample Information Sample Method(s): Peristaltic pump / Submersible pump / Bladder Pump / Other Comments Preservative/Filtration Time Bottle Type **Analysis** Volatiles (8260B) 1222 (3) 40-mL VOA HCl. cool to 4°C H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 1222 Dissolved gasses (MEE) cool to 4°C (3) 40-mL VOA (RSK-175) Ferrous Iron 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) (1) 500 mL HDPE Anions (EPA 300.0) cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C 222 (1) 500 mL HDPE field filter, HNO3 Metals (200.8&6010B) Census bio-flo&MI falcon tube cool to 4°C End Time Comments / Exceptions: YES / (NO) YES / NO Presence of sinking product? Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date PLZ-017A. Station Field Team: (Initials) Sample: ID 1-110117-PLQ-017A-0 Field Conditions N.55° F. Windy Party Sunny Purge Information Purge Method: Submersible pump Well Diameter (in.) 20.8 Bladder Pump Well Depth (ft.) Peristaltic Pump Initial Depth to Water (ft.) Other: Depth of Water Column 1230 Start Time 3 Casing Volumes **End Time** 1 Casing Volume Total Gallons Purged Water Level ORP Appearance NTU DO Temp. Conductivity Time Gallons рΗ 8,32 230 8.45 Clean 8,07 10,45 1235 0.3 7,42 0.666 5,89 8,47 Cler .9 10,30 5,85 7.72 66.5 1>42 6.91 0,475 58.1 8,48 Clean 9.88 0.468 1245 6.79 81 7,69 8.48 6:73 0,466 10,23 ,82 53.2 1248 65 - 48,6 8,48 Close 10.35 6.6 0.464 8,45 31,2 98 Clar 6,54 10.06 1304 Z 457 6,025,96 27,8 8,43 6,53 0,454 10,27 1310 9.95 6,04 5,937 0,453 1313 93 スる 0.453 1316 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Preservative/Filtration Comments Bottle Type Analysis Time HCI, cool to 4°C Volatiles (8260B) (3) 40-mL VOA MS/MSD H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 3 i MS/MSI Dissolved gasses (MEE) (3) 40-mL VOA cool to 4℃ 1319 (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) 1319 field filter 0.45 micron filter, Organics Acids (VFA) (1) 500 mL poly /MSD HNO₃ to pH <2, cool to 4°C field filter, HNO₃ (1) 500 mL HDPE Metals (200.8&6010B) 319 cool to 4°C Census bio-flo&MI falcon tube

End Time					
		Con	nments / Exceptions:		
Presence of float	ing product?	YES (NO)	Presence of sinking product?	YES / (NO)	
* 00 ro	adina not	consister	at with previous Qt	oly parameters	Calibrate
other YSI	to dou	ble check	DO reading		
			J		
42 YSI 55	6 MPS				
SN 08	B100976		ottpaper = 6		
			4 1 1 .		

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington

			Date 1/15/11 8-PP-18-T-O Field Team: (Initials) TRAK						
	ions [C loudy			4:				
Well Diameter (Well Depth (ft.) Initial Depth to Depth of Water	Water (ft.)	2" 9.78	Purge	nforma Pเ	irge Method:	Submersible pum Bladder Pump Reristaltic Pump Other: :			
3 Casing Volun 1 Casing Volun	nes		*	Tota	Start Time End Time al Gallons Purged	0800 0839 1.5 gs/k-5		Water	
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance
0814	.5	6.36	12.66 m 5/em	11.2	1.60=	11.36	-129.4	9,8/	ckar
0317	.65	6,39	12.83 S/cm	7.84	1.34 (2)	11.46	-1439	9.87	Clear
0820	. 90	6.40	12.85 mS/cm	6.32	1,102	11.5%	-149.2		ckw
0823	.90	6,42	12.83 Slene	6.03	6.96 2	11.55	-154.5	9,39	clear
0826	1.0	6,44	1278 Sac	6.11	0.882	11.61	-156.	9.93	Clar
0329	1,15	6,45	12,72,3/~	5.69	0,80 2	11.65	-160.9	9,95	t is a
0832	1.30	6,46	12.66 ms/2°	5,49	0.7427	11,70	160.7	83 8 (10)	E. C. C.
	4.00 LAND								
	a ly a sea consisting	5 · · · · ·							
			<u> </u>						
			<u> </u>						
Sample Me	ethod(s) (:	Peristaltic	Samp pump / Submersi	e Inforr		np / Other			
Ana	lysis	Time	Bottle Type	·	ative/Filtration	T	Comments		
Volatiles	(8260B)	0834	(3) 40-mL VOA	cool to	o 4°C				
TOC ((415.1)	0834	250 mL amber	H₂SO₄ to p	H <2, cool to 4°C				
	asses (MEE) (-175)		(3) 40-mL VOA	cool to 4°C					
	us Iron) Fe B-97)	:	250 mL amber		Do NOT filter				
Anions (E	PA 300.0)		(1) 500 mL HDPE	cool to 4°C).45 micron filter,				
	Acids (VFA)		(1) 500 mL poly	HNO₃ to pl	H <2, cool to 4°C				
Metals (20	0.8&6010B)	0834	(1) 500 mL HDPE						
Ce	nsus		bio-flo&MI falcon tube	cool to 4°C) 				
End Time) 	0839							
Presence	of floating	product?	YES (NO	Presenc	ceptions: e of sinking pr	oduct? YI	ES(N)		
							•••••		

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington 2-021A Date Station Field Team: (Initials) Sample: ID -110118-917-021A-Field Conditions **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Well Depth (ft.) Bladder Pump Peristaitic Pump Initial Depth to Water (ft.) 9.66 Other: : Depth of Water Column 0841 Start Time 3 Casing Volumes End Time 10000 1 Casing Volume anllows Total Gallons Purged Water Level Appearance ORP NTU DO Temp Gallons Hq Conductivity Time 13,44 10.66 125.8 clan 2,766 4.89 0.56 10.19 5,17 0.55 13.41 -127. clear 2,764 1.0 0,52 2,760 4.95 13.32 -130.7 10,20 clear 0.51 5.16 13.27 -130,6 10.20 clar 4 2,759 0945 60 13:26 10.73 756 5.49 0.49 New 40 m Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Bottle Type Preservative/Filtration Comments **Analysis** Time Volatiles (8260B) (3) 40-mL VOA HCl. cool to 4°C 0915 0970 H₂SO4 to pH <2, cool to 4°C TOC (415.1) 250 mL amber 0920 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C 0920 0915 (RSK-175) Ferrous Iron (SM3500 Fe B-97) 250 mL amber cool to 4°C Do NOT filter 0920 0915 Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C 0920 0915 field filter 0.45 micron filter, HNO₃ to pH <2, cool to 4°C Organics Acids (VFA) (1) 500 mL poly 0915 0970 (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) 0920 0915 500₀ bio-flo&MI falcon tube cool to 4°C Census 0913 0920 **End Time** 1000 Comments / Exceptions: YES / NO YES / NO Presence of sinking product? Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington

Station Sample: ID Field Condit	tions	PLZ-0	216 118-PLZ-0216-6			Date 1 / 18111 Field Team: (Initials) JB+CA				
				Informa	tion					
Well Diameter Well Depth (ft.) Initial Depth to Depth of Water 3 Casing Volur 1 Casing Volur	Water (ft.) r Column nes	Z" 10.76'	ruige	Pu	rge Method:	Bladder Pump Peristaltic Pump Other::				
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Water Level	Appearance	
1057	.5	7.80	23.18	10.43	0.192	13.24	-151.4	10289	Clear	
1100	065	7.85	23.22	7.05	0.69	13,25	-164.1	10.88	cley	
1103	,30	7.90	73.25	5,71	0,627	13.07	-170.8	10.88	clear	
1106	.95	7.93	23.30	3.80	0.57	13.03	#173,1	10.88	clear	
1109	1.10	7.96	23.26	2.87	0,527	13.00	-114.3	10.8	e lear	
	1.5									
						<u> </u>				
Ana	ethod(s) : alysis a (8260B)	Peristaltic Time	Samp pump / Submersi Bottle Type		/ Bladder Pun tive/Filtration	np / Other	Comments			
	(415.1)		250 mL amber	H₂SO₄ to pl	H <2, cool to 4°C					
Dissolved g	asses (MEE) (-175)	300	(3) 40-mL VOA	cool to 4°C						
1	us Iron) Fe B-97)		250 mL amber		Do NOT filter					
Anions (E	EPA 300.0)		(1) 500 mL HDPE	cool to 4°C	4E mioron filtor					
	Acids (VFA)		(1) 500 mL poly	HNO₃ to pH	.45 micron filter, I <2, cool to 4°C					
Metals (20	0.8&6010B)	1//	(1) 500 mL HDPE	field filter, I						
Се	nsus		bio-flo&MI falcon tub	e cool to 4°C						
End Time	•	1115								
Presence	of floating	product?	YES / NO	Presenc	ceptions: e of sinking pr	oduct? YE	ES / NO			

Station Station Boeing Plant 2, Seattle/Tukwila, Washington Date 1/5/11									
Station	-	VLZ-0	21B -PLZ-021B-0		Field Tea	am: (Initials)	110111 16+K4		
Sample: ID Field Condi		<u>6 W-110110</u> Clauda	+ COOL		11010 70				
r leid Corlai	Liono L	<u> </u>			4:				
	· •		Purge l	ntorina	urge Method : :	Submersible num	n		
Well Diameter	` ' r	Ζ"		FU		Bladder Pump	۲		
Well Depth (ft. Initial Depth to		97A				Peristaltic Pump	7		
Depth of Wate					<u>.</u>	Other: :		1	
3 Casing Volu					Start Time	1008		1	
1 Casing Volu	me			T-1-	End Time al Gallons Purged	1042	*	1	
				1018	al Gallons Fulged [1.7 361193	15	ע Water	
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance
1019	- 5	6.54		2,78	1.30 00	1z.88	-149,5	9.76	clear
1022	7	6,58	8525	1.38	0.992	12.97	×159.0	9.77	clear
1025	,9	6.61	8,495	2.27	6837	13.00	-166.3	9.78	Cler
1028	111	1.64	8,480	2.83	0.732	12.99	-170.7	9,79	clear
1031	1.3	6.66	8,489	1.14	0.66 7	12.95	-169.2	9.78	cless
1034	15	6.66	8,494	1.25	0.61 2	12.96	-1768	9.77	clear
	1 11 1				 				
			_						
			pump / Submersi		mation / Bladder Pun ative/Filtration	np / Other	Comments		
	alysis	Time	Bottle Type (3) 40-mL VOA	HCl, cool t			001111101111		
	es (8260B)	1037							
TOC	(415.1)	1637	250 mL amber	H₂SU₄ to t	oH <2, cool to 4°C				
Dissolved (RS	gasses (MEE) SK-175)		(3) 40-mL VOA	cool to 4°C	D				
	ous Iron 00 Fe B-97)		250 mL amber	<u> </u>	Do NOT filter				
Anions	(EPA 300.0)		(1) 500 mL HDPE	cool to 4°0					
Organics	s Acids (VFA)		(1) 500 mL poly	field filter HNO₃ to p	0.45 micron filter, bH <2, cool to 4°C				
Metals (2	200.8&6010B)	1037	(1) 500 mL HDPE	field filter,	HNO₃				
С	ensu s		bio-flo&MI falcon tub	e cool to 4°	С				
End Tin	20	1042							
End IIII	ie .		Comm	onte / Ex	ceptions:				
Presence	e of floating	product?	YES (NO)	Presen	ce of sinking pr	oduct? Y	ES (NO)		

		aguired to complete	sampling, parameters are to be	checked prior	to sampling for each visit	. Enter data under field	I comments.		
Notes: where	mumpie visits are re	edougn to combiging	oupm.g, purumotoro ara to b						

Boeing Plant 2, Seattle/Tukwila, Washington PLZ-031A Station Field Team: (Initials) Sample: ID GW-110118-PLZ-031A-0, Field Conditions 5 Coc **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 844 Initial Depth to Water (ft.) Other: : Depth of Water Column 1122 Start Time 3 Casing Volumes 1200 1 Casing Volume End Time Total Gallons Purged 7.0 Water ORP Level Appearance DO Temp. Gallons Conductivity NTU Time рΗ 0,455 3,02 13,18 -9.5 83 21147 843 1134 050 7 13.13 -14.4 8.43 2.49 8.28 21157 8 1138 893 40 301 -16.6 2,200 6,512 1217 1141 8.19 1.2 2,225 3.48 0.532 -18:2 8,43 13,21 1194 8.11 8:41 1.31 6.83 2 79.1 239 114 1.4 8,06 13.20 -19.9 8.4 2.236 2.56 0.55% 1150 1.6 8.01 235 0.33 13,21 -234 1153 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) (: Bottle Type Preservative/Filtration Comments Analysis Time Volatiles (8260B) (3) 40-mL VOA HCI, cool to 4°C 1155 H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) 1155 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C 1155 (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber 1155 (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C 1155 field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) bio-flo&MI falcon tube cool to 4°C Census 1203 End Time Comments / Exceptions: YES / (NO YES / NO Presence of sinking product? Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington

Station Sample: ID		PL2-	41AP 8-PLZ-041AA-		Date 7/8/// Field Team: (Initials) KA JR						
Field Condi	tions	Raini			7.0.5						
			/	Informa	tion						
Well Diameter Well Depth (ft.) Initial Depth to)	z/* 8.90	ruige		rge Method :	Submersible pum Bladder Pump Peristaltic Pump	to man to				
Depth of Wate	r Column	V			Г	Other::					
3 Casing Volum 1 Casing Volum					Start Time End Time	1206					
i Casing volui	i je			Tota	l Gallons Purged	3,5 97/	ر ح				
Time	Gallons	ъЦ	Conductivity	NTU	DO	Temp.	ORP	Water Level	Appea	arance	
Time 1229	li S	9H 8,80	0.809	3,20	0,52	13-31	-40,2	9-01	clear	- Wisht	
1232	1,75	8.67	0,854	2,95	0,52	13,24	-428	9.01	clear	brown	
1235	1.9	8.61	0.884	2,88	0,52	13,21	-41,9	9.01	clean	-119ht6101	
1238	2,1	8,49	0.934	2,88	0,53	13,17	-43.6	9.01	clear	light brow.	
1241	2.3	58,42	0.988	2,70	0,55	13.24	-43.8	9.01	class lig	if som	
1244	2.5	8,32	1,014	2,74	0,55	13,28	-44,6	9.00	close	Tight br.	
1247	2,6	8,22	1,029	3,19	0.56	13.28	-44.7	9.00	clar-1	inly bro	
1253	3.0	8,17	1,040	3,13	0,56	13,30	-45.2	9.00	clear	light be	
	si.										
	1										
					C						
	N N - X	Deviateltia	pump / Submersi	le Inforn		n / Other					
Sample M	etnod(s)	Peristantic	pullip / Submersi			ip / Otrioi					
	ılysis	Time	Bottle Type	·	tive/Filtration	T	Comments				
	s (8260B)	1255	(3) 40-mL VOA	cool to							
	(415.1)	- Carrier Carr	250 mL amber	H₂SO₄ to pi	H <2, cool to 4°C	-					
Dissolved g (RSI	asses (MEE) <-175)	Patricularisations	(3) 40-mL VOA	cool to 4°C							
	ius Iron D Fe B-97)	Minute Co.	250 mL amber	cool to 4°C	Do NOT filter						
Anions (EPA 300.0)	complete de l'alla de l'al	(1) 500 mL HDPE	cool to 4°C							
Organics	Acids (VFA)	-	(1) 500 mL poly		.45 micron filter, H <2, cool to 4°C						
Metals (20	00.8&6010B)	1255	(1) 500 mL HDPE	field filter, F							
Ce	ensus	Proposition	bio-flo&MI falcon tub	e cool to 4°C							
		12/53									
End Tim	e 	1363	Comm	ents / Exc	contions:		63				
Presence	of floating	product?	YES /NO	Presenc	e of sinking pro	oduct? YE	ES / NO				
11 -	.000	= 8			,,						
PH P	are										

	<u></u>										
Notes: Where m	ultiple visits are re	quired to complete s	ampling, parameters are to be	checked prior to	sampling for each visit.	Enter data under field o	comments.				

Boeing Plant 2, Seattle/Tukwila, Washington Date 1113/11 Station Field Team: (Initials) MA Sample: ID 64-110118-PLZ-008C & Render Field Conditions **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 8,96 Initial Depth to Water (ft.) Other: : Depth of Water Column Start Time 1307 3 Casing Volumes End Time 1237 1 Casing Volume Total Gallons Purged 1.500 Water Level Appearance ORP NTU DO Temp. Conductivity Gallons рН Time elen 3.34 0.44 12.64 -426 8.46 8.12 5.990 315 40 2.18 7.74 -724 894 clear 5987 0.43 1318 20 8.43 -96.7 70 S,25 5.980 1.00 0.42 12.79 clear 1321 12.79 clas -107.5 877 85 8.29 5.990 1.01 641 1324 -113.8 12.75 844 830 0,40 Clar 5994 0.96 1.0 1327 1274 -1178 845 clear 1330 8.37 6. 000 0.91 6.40 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Preservative/Filtration Comments Time Bottle Type Analysis HCI, cool to 4°C (3) 40-mL VOA Volatiles (8260B) 1333 H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber Dissolved gasses (MEE) (RSK-175) (3) 40-mL VOA cool to 4°C Ferrous Iron cool to 4°C Do NOT filter 250 ml. amber (SM3500 Fe B-97) (1) 500 ml. HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO3 to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) 1333 bio-flo&MI falcon tube cool to 4°C Census 133 **Fnd Time** Comments / Exceptions: YES (NO) YES ! NO Presence of sinking product? Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington PLZ-008B Station Field Team: (Initials) 6W-110118-PLZ-008B-0 Sample: ID Field Conditions Raining **Purge Information** Purge Method: Submersible pump 211 Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 9.20 Initial Depth to Water (ft.) Other: Depth of Water Column Start Time 1339 3 Casing Volumes End Time 1406 1 Casing Volume Total Gallons Purged gulla Water l evel Appearance ORP DO Temp. NTU Time Gallons Conductivity clear 0.53 11.38 -642 9.30 1342 0,5 7.45 4.051 10,72 932 -697 9.61 6.54 11.30 r lear 4,055 0.65 8.36 0.55 11.25 -71.0 9.33 4.071 0.80 1248 -86.7 9.35 11.29 4,134 6,52 0.56 0.95 135 -85.2 4.149 9.36 5,58 0.58 11.35 1354 1.10 7.10 9.3 ben 4,156 5.97 0.58 11.38 -89.9 25 7.06 1357 Sample Information Sample Method(s): Peristaltic pump / Submersible pump / Bladder Pump / Other Comments Preservative/Filtration Bottle Type **Analysis** Time 1400 (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 1400 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) 1900 bio-flo&MI falcon tube cool to 4°C Census MACK End Time Comments / Exceptions: YES // NO Presence of sinking product? Presence of floating product? YES(/ NO)

Boeing Plant 2, Seattle/Tukwila, Washington PP-3A-I Station Field Team: (Initials) Sample: ID SW-110119-PP-34-E. Field Conditions COOI + cloud Purge Information Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 9.03 Initial Depth to Water (ft.) Other: Depth of Water Column Start Time 0755 3 Casing Volumes End Time 0835 1 Casing Volume Total Gallons Purged 1.9 50/2 Water ORP Level Appearance NTU DO Temp. Time Gallons pΗ Conductivity 1.02 9.04 2,560.51.5 5.58 14.0 080 45 13.41 0.95 2 4.47 13,44 -3.9 9.04 .75 6.58 2.582-4 0610 0.97 2 13.50 -19.8 9.04 0813 667 3,58 90 1.0<u>5</u> 0.767 9.05 13.53 -38.8 6.75 2.59 0816 20 2,01 0.827 13.55 -521 9.06 0319 6.72 9 9.06 35 6.94 578 1.86 13,50 -57.6 0822 0.717 9.06 clear 1,50 .84 285 13.50 -67,8 0825 6658 clear 13,54 6.87 0858 1.65 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(\$) Comments Time Bottle Type Preservative/Filtration Analysis (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) 0830 H₂SO4 to pH <2, cool to 4°C TOC (415.1) 250 mL amber 0830 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) cool to 4°C (1) 500 mL HDPE Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO3 0830 Metals (200.8&6010B) cool to 4°C bio-flo&MI falcon tube Census 0835 End Time Comments / Exceptions: YES / NO YES NO Presence of sinking product? Presence of floating product? Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments

Station PP-38-T Date 1/9/11									
Station		<u> </u>	- 38-T		Field To	ן bate am: (Initials)	IB 2 K/		
Sample: ID Field Condit	ione		19-PP-3B-I-C	<i>)</i>	i leiu tei	arii. (iiiidalo) [-4 D 4 KI	3	
Fleia Coriait	.10115 [C PE	r de cecol						
			Purge I	nforma	tion				
Well Diameter	(in.)	Zu		Pu	rge Method ::				
Well Depth (ft.)	` '					Bladder Pump			
Initial Depth to		3.93				Peristaltic Pump)		
Depth of Water	Column				г	Other::		1	
3 Casing Volun	nes				Start Time	0837		-	
1 Casing Volun	ne				End Time	0908		1	
				Tota	ıl Gallons Purged [1.3 90//-	<u>></u>	J Water	
Timo	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance
Time			11.92 m5/c.5	1.80	0.56 %	12,99	-193.9	9.12	cen
0846	. 4	6.77			0-562	12.92		9.13	clear
0849	,55	6.84	11.99 S/ce	3, 33	0.55 2		-ZO5.5		
0852	.70	6.87	1208 m S/cm	6.73	0.56 Es	12.95	-213.3	9./3	cled
0855	,85	6,90	12.12 n. 46.5	2.41	0.56 7	13.05	-217.5	9.15	clear
0858	1.0	6.90	12,16 m/scac	2.93	0,56 23	13.03	-310,6	9.16	cker
0901	1.15	6.90	12,20 mgs	5.44	0.55 75	13.09	-2014	9.17	clear
				<u> </u>					
									
	<u> </u>								
		<u> </u>						<u> </u>	
						-			
			Sampl	e Inforn	nation				
Sample Me	ethod(s) :	Peristaltic	pump / Submersit	ole pump	/ Bladder Pum	p / Other			
Campic ivid	Janoa(0) .		mountain the same of the same			•			
Ana	lysis	Time	Bottle Type	Preserva	tive/Filtration		Comments		
Volatiles	(8260B)	0904	(3) 40-mL VOA	H⊅©T, cool to	0 4°C	NOW-PRE	SERVED		
TOC ((415.1)	0904	250 mL amber	H₂SO₄ to pl	H <2, cool to 4°C				
		0707				-			
	asses (MEE) (-175)		(3) 40-mL VOA	cool to 4°C					
	· · · · · · · · · · · · · · · · · · ·		0.50		D- NOTES				
	us Iron) Fe B-97)		250 mL amber	cool to 4°C	Do NOT filter				
· · · · · · · · · · · · · · · · · · ·	EPA 300.0)		(1) 500 mL HDPE	cool to 4°C					
`			1	field filter 0	.45 micron filter,				
Organics /	Acids (VFA)		(1) 500 mL poly		H <2, cool to 4°C				
Metals (20	0.8&6010B)	0904	(1) 500 mL HDPE	field filter, F	HNO ₃				
· · · · · · · · · · · · · · · · · · ·	nsus	10/-	bio-flo&MI falcon tube	cool to 4°C					
Ce	Houo	1	Die nealth falcon tabe	13001.10 4 0					
		AC 60	7						
End Time)	0408						************	
			Comme	ents / Exc	ceptions:				
Presence	of floating	product?	YES (NO)	Presenc	e of sinking pro	oduct? YE	ES (NO)		

					······································				

					nampling for each visit	Enter data under field o	comments.		
Notes: Where mu	Jitiple visits are rei	quirea to compiete s	ampling, parameters are to be	Puscyen huor in	sampling for each visit.				

Boeing Plant 2, Seattle/Tukwila, Washington PLZ-010A Station Field Team: (Initials) TP +KA (2h)-110119-PLZ-010A-0 Sample: ID Field Conditions Clear & cool **Purge Information** Purge Method: Submersible pump Well Diameter (in.) 21 Bladder Pump Well Depth (ft.) Peristaltic Pump 9.16 Initial Depth to Water (ft.) Other: : Depth of Water Column Start Time 0909 3 Casing Volumes 0948 1 Casing Volume End Time Total Gallons Purged 2.0 92/10 Water ORP Level Appearance DO Temp. Gallons Conductivity NTU Time 59 -56.0 14.48 cheen 10.13 0914 6.71 1,484 0do 8 -47.3 9.34 0.76 14,49 Clean 0.5 6.55 1.407 1:359 14.34 -43.59.66 0.87 6:43 0.6 .325 0.91 36 68 Clarc 0.8 6.38 14.33 9.68 . 296 10,28 0.97 Clear 26 6.Z7 -30.0 9.83 9.68 Clear 0929 1,2 6.25 1,279 0.83 14.28 ,18 -27.4 9.68 0932 1,273 8,99 0.81 14.22 Clear 1.4 9.68 Char 8,74 -Z5 0:78 0935 1.6 6.70 267 Sample Information Sample Method(s): Peristaltic pump Submersible pump / Bladder Pump / Other **Bottle Type** Preservative/Filtration Comments **Analysis** Time HCI, cool to 4°C (3) 40-mL VOA Volatiles (8260B) 0937 H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) 0937 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO3 to pH <2, cool to 4°C Metals (200.8&6010B) 0937 (1) 500 mL HDPE field filter, HNO₃ bio-flo&MI falcon tube cool to 4°C Census 0 945 End Time Comments / Exceptions: YES / NO YES (NO Presence of sinking product? Presence of floating product?

Boeing Plant 2, Seattle/Tukwila, Washington Date PL2-035A Station GW-110119-P-2-035A-0 Field Team: (Initials) Sample: ID ~ 400F Field Conditions Purge Information Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 9.40 Initial Depth to Water (ft.) Other: Depth of Water Column 0951 Start Time 3 Casing Volumes 1031 End Time 1 Casing Volume 2.5 3911005 Total Gallons Purged Water Appearance **ORP** Level Temp. DO Gallons Hq Conductivity Time 9.48 -21,0 15.08% 29 17 m3 2.736 m S/cm 1002 6 32 0852 -43,8 9.49 15.08% 2.24 36 .9 1005 0.69 73 -62.9 9.50 15.15 ℃ 2.41 37 1.1 1008 0.60 2 15.24°C -76.4 9.51 3.06 Clear 40 738 m Slo 1.3 1011 0.54 2 15.186 > 86.5 9.52 40 2.745 ms/cm 2.17 1014 15.16°C 0,50 -92.9 9.53 43 5.64 1017 15,098 cker -98.9 1,53 6.44 1020 1.9 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Comments Preservative/Filtration Time Bottle Type Analysis (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) 1022 250 mL amber H,SO4 to pH <2, cool to 4°C TOC (415.1) 1022 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C 1022 (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber 1627 (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C field filter, HNO₃ (1) 500 mL HDPE Metals (200.8&6010B) 1022 bio-flo&MI falcon tube cool to 4°C Census 1031 **End Time** Comments / Exceptions: YES (NO YES / NÓ Presence of sinking product? Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date /// Field Team: (Initials) JR Sample: ID GN-110119-PP-ZB-0-0 Field Conditions Clear & Coal Purge Information

Well Diameter	(in.)	2 r		nþ					
Well Depth (ft.)						Bladder Pump	**************************************		
Initial Depth to		9.90				Peristaltic Pum	p)		
Depth of Water						Other: :		•	
3 Casing Volur					Start Time	103	2		
1 Casing Volur					End Time	1100		j	
		<u></u>		Tota	l Gallons Purged	15 galla	· 5		
					_	J		Water	
[*] Time	Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance
1044	,5	6.72	3.387,5/c~	1.80	0,462	13.85	-78.6	10,01	Clear
1047	.7	6.73	3387m/L	2.64	0.482	13.86	-86.3	10.03	clear
1050	9	6,76	3.397m/c 5	1.72	0,49 2	13.85	-91.1	10,05	Clary
1053	1.1	6.75	3.399nJe"	1.21	0502	13,79	-96,0	1007	ch
1,000	7.1							ā	
1	1								

	1								
1									

Sample Information

Station

Sample Method(s) Peristaltic pump / Submersible pump / Bladder Pump / Other

Analysis	Time	Bottle Type	Preservative/Filtration	Comments
Volatiles (8260B)	1055	(3) 40-mL VOA	l ≄SI , cool to 4°C	
TOC (415.1)	-	250 mL amber	H₂SO₄ to pH <2, cool to 4°C	
Dissolved gasses (MEE) (RSK-175)	*Alegement?	(3) 40-mL VOA	cool to 4°C	
Ferrous Iron (SM3500 Fe B-97)	: general	250 mL amber	cool to 4°C Do NOT filter	
Anions (EPA 300.0)	Santage Contract	(1) 500 mL HDPE	cool to 4°C	
Organics Acids (VFA)	-950cc-25079		field filter 0.45 micron filter, HNO₃ to pH <2, cool to 4°C	
Metals (200.8&6010B)	1055	(1) 500 mL HDPE	field filter, HNO ₃	
Census	haran and the same of the same	bio-flo&MI falcon tube	cool to 4°C	

End Time	1100			
		Com	ments / Exceptions:	VES (NO

Otation	PP-28	Boeing Plant 2, Se	eattle/Tukv	wiia, vvasningt	on Date [1/19/11		
Station Sample: ID	GN-1101	19-88-1-0	.1	Field Te	am: (Initials)	JB+KA	3	
Field Conditions	Clear							
		Purae	nforma	tion				
Well Diameter (in.)	2"				Submersible pum	р		
Well Depth (ft.)					Bladder Pump			
Initial Depth to Water (ft.)	9.74				Peristaltic Pump Other::			
Depth of Water Column 3 Casing Volumes				Start Time)) O)			
1 Casing Volume				End Time	1135			
ŭ		•	Tota	l Gallons Purged	45 9011	240	11/2424	
Time Gallons	s pH	Conductivity	NTU	DO	Temp.	ORP	Water Level	Appearance
1105 0.3	7.04	4.301	8,16	0.56	13,42	-77.7	10,01	clear
1108 0,5	7.06	4,310	7,15	0,55	13.37	-86,3	10.01	clear
1111 0.7	7.03	4,321	5.65	0.50	13,34	-95.6	10.01	
1114 0.9	7.00	4.324	4.90	0.51	13.31	-97,1	10,01	clear
1117 1,1	6.96	4,324	4,27	0,52	13.30	-99,6	10.01	clear
·				·				
· · · · · · · · · · · · · · · · · · ·								
	A STATE OF THE PARTY OF THE PAR		le Inforn					
Sample Method(s)	: Peristaltic	pump / Submersi	ble pump	/ Bladder Pun	np / Other			
Analysis	Time	Bottle Type	Preserva	tive/Filtration		Comments		
Volatiles (8260B)	1119	(3) 40-mL VOA	H©l, cool to		1124	Puplic	ate	
TOC (415.1)	1119	250 mL amber	H₂SO₄ to pl	H <2, cool to 4°C	1124	Duplie		
Dissolved gasses (ME								
(RSK-175)		(3) 40-mL VOA	cool to 4°C					
Ferrous Iron	· orangeprocessories	250 mL amber	cool to 4°C	Do NOT filter				
(SM3500 Fe B-97) Anions (EPA 300.0)		(1) 500 mL HDPE	cool to 4°C					
		1.	field filter 0	.45 micron filter,				
Organics Acids (VFA		(1) 500 mL poly		<2, cool to 4°C		5 1.		
Metals (200.8&6010E	3) 1119	(1) 500 mL HDPE	field filter, h	HNO ₃	1124	- Puplic	ete_	
Census	* Alleganistic and the second	bio-flo&MI falcon tube	cool to 4°C		<u> </u>			
	1175	7						
End Time	1133		. , .					
Droomer of floating	a producto	YES / NO	ents / Exc	ceptions: e of sinking pr	oduct? VF	ES / (NO)		
Presence of floatin	g product?	I LO / INC	1 1036110	o or on initing pr	oddot. II			
					**			
	,							
			•					
Notes: Where multiple visits are	e required to complete s	sampling, parameters are to be	checked prior to	sampling for each visit.	. Enter data under field o	comments.		

Boeing Plant 2, Seattle/Tukwila, Washington Date PP-4B-I Station Field Team: (Initials) CW-110119-PP-48-I-C JR Sample: ID Field Conditions Clear & **Purge Information** 2" Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 9.63 Initial Depth to Water (ft.) Other: Depth of Water Column 1140 Start Time 3 Casing Volumes End Time 1215 1 Casing Volume Total Gallons Purged 20 gall Water ORP Level Appearance Temp. NTU DO Time Gallons pН Conductivity 9.81 6.91 1.36 -85.0 1149 0/49/2/6 3,26 14,39 -892 983 cleu . 5 6.85 6 46 mall 1152 49mg/L 693.0 2.84 1442 79 1155 =9510 3.21 6.51ml4 14.50 9.85 6.76 1158 9.86 6.76 14.49 -95,6 1201 9.87 4.50 -95.2 cle. 1,5 54 1204 5,087ms Ó, -95.4 4.50 988 1207 1.96 0,53 Cher Sample Information Sample Method(s) Peristaltic pump / Submersible pump / Bladder Pump / Other Comments Time Bottle Type Preservative/Filtration Analysis HCL cool to 4°C Volatiles (8260B) 1211 (3) 40-mL VOA H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 1211 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, Organics Acids (VFA) (1) 500 mL poly HNO₃ to pH <2, cool to 4°C field filter, HNO₃ (1) 500 mL HDPE Metals (200.8&6010B) 1211 bio-flo&MI falcon tube cool to 4°C Census 1516 End Time Comments / Exceptions: YES / (NO) Presence of sinking product? YES (NO) Presence of floating product? Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments

Station	Γ		Boeing Plant 2, Se 48-0	eattle/Tukw		Date	Maly		
Sample: ID		GW-1101	19-19-48-0-0		Field Te	am: (Initials)	JBAKA		
Field Condi	tions [cl	ecr × Cool						
			Purge	Informat					
Well Diameter Well Depth (ft. Initial Depth to) Water (ft.)	2"		Pur	<	Bladder Pump Peristaltic Pump	_		
Depth of Wate					Start Time	Other::			.
3 Casing Volui 1 Casing Volui	T T				End Time	1300			
	,			Total	Gallons Purged	2.0] Water	
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance
1222	0.4	6.62	3,929	1.7(1.28	14.88	-107.7	9.71	clear
1225	0.5	6.57	4.019	1.84	1,14	14,77	-115.3	9.65	clear
1228	0,7	6.52	4,160	2.18	0:97	14.80	-119.5	9.65	clear
1231	0:8	6.49	4,547	1.63	0.82	14,73	-122.7	9.63	clear
1234	1, O	6,50	5,003	1,62	0.73	14,64	-121,9	9,60	clear
1237	1, 2	6.54	5,164	1,19	0,65	14,54	-119,7	9,58	dear
1240	1,3	6.54	5.176	1,12	0.58	14.45	-119.D	9,54	der
1243	1.5	6.56	5.160	1,18	0.53	14,28	-118.5	9,52	clear
1246	1.6	6,57	5.112	1.24	0.48	14.08	-118.5	9,50	chear
1249	1,8	6,58	5.116	2.87	0.45	14,00	-118,2	9,48	clear
1252	1,9	6,58	5,090	C.0+	0.45	19,01	11072	6713	CUE
	<u> </u>								
			pump / Submersi			np / Other	Comments		
	alysis s (8260B)	Time	Bottle Type (3) 40-mL VOA	Het: cool to			Comments		
		1254	250 mL amber		I <2, cool to 4°C				
Dissolved ((415.1) gasses (MEE) K-175)	- Martine and community	(3) 40-mL VOA	cool to 4°C	1 42, 000110 4 0	-			
Ferro	ous Iron 0 Fe B-97)		250 mL amber	cool to 4°C	Do NOT filter				
<u> </u>	EPA 300.0)	- magazine	(1) 500 mL HDPE	cool to 4°C					
Organics	Acids (VFA)	, managamanian	(1) 500 mL poly	HNO₃ to pH	45 micron filter, <2, cool to 4°C				
Metals (2	00.8&6010B)	1254	(1) 500 mL HDPE	field filter, H	INO₃			3	
Ce	ensus	** and the state of the state o	bio-flo&MI falcon tube	e cool to 4°C					
End Tim	e	1300]						
Presence	of floating	product?	YES /NO	ents / Exc Presence	eptions: of sinking pr	oduct? Y	ES / NO)		Κ
* 70.	MP Stap	ped tei	nporarily						

Notes: Where ri	nultiple visits are re	quired to complete s	ampling, parameters are to be	checked prior to	sampling for each visit.	Enter data under field	comments.		

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Station Field Team: (Initials) Sample: ID Field Conditions **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump Initial Depth to Water (ft.) Other: : Depth of Water Column Start Time 3 Casing Volumes **End Time** 1 Casing Volume Total Gallons Purged Water Level Appearance ORP NTU DO Temp. Gailons Hq Conductivity Time Sample Information Sample Method(s) : Peristaltic pump / Submersible pump / Bladder Pump / Other **Bottle Type** Preservative/Filtration Comments Analysis Time (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO3 to pH <2, cool to 4°C field filter, HNO₃ Metals (200.8&6010B) (1) 500 mL HDPE bio-flo&MI falcon tube cool to 4°C Census End Time Comments / Exceptions: Presence of sinking product? YES / NO YES / NO Presence of floating product?

Boeing Plant 2, 2-66 Sheetpile IM injection Baseline Monitoring Well Network Water Levels

Monitoring VI			Measuring Point	Water Level	Measured	
	Date &	Depth to Water		Elevation (ft.	Total Depth (ft.	
184-11						C
Well	Time	(ft.)	NAVD)	NAVD)	bgs)	Comments
PL2-010A	0933/1/11/1	8.90	12.09		20.61	
PL2-017A	0122 1/17/11	8A2	11.81		20.61	
PL2-021A	063/1/11/11	9,55	12.72		19.75	
PL2-021B	0950 1/17/0	9,56	12.67		48.46	
PL2-021C	0956 11/17/1	9,55	12.56		91.52	
PL2-031A	0924/1/17/1	0.00	11.45		29.06	
PL2-032A	0915/117/11	0 0-	12.47		29.24	
PL2-035A	0999/1/1/1	9.09	12.26		29.68	7.
PL2-008B PLZ-009C	0938/11/11	9.24				
PP-1B-I	6948/11/11	4.13	12.83		50	
PP-2B-1 PP-2B-0	0946 [1/11 x	9.02 8.52	12.31		49.89	57 5
PP-3A-I	เคราไปเปก	41 . 0	12.02		20.2	
PP-3B-I	0935/1/17/11	8.77	11.88		47.62	
PP-4B-1 PP-4B-0	0942 (1/17/n	892	12.29		50.05	
PP-5B-I	0918 Jil17/W	8.85	12.09		50.02	

PLZ-041AA0926/117/1 6.52

15 wells 2 Dupes 1 MS/MSD

Chain of Custody Record & Laboratory Analysis Request Analytical Resources, Incorporated Turn-around Requested: of ARI Assigned Number Page: Analytical Chemists and Consultants 4611 South 134th Place, Suite 100 ice. Phone: Date: Boeing Tukwila, WA 98168 ARI Client Company: 1/17/ Present? 206-695-6200 206-695-6201 (fax) Cooler Will Ernst Client Contact: Temps: Coolers: Notes/Comments Analysis Requested 2-66 ERD IM Performance Sampling qDHC bacterial census (by MI) Client Project Name: dissolved metals are organic acids (by MI) Anions EPA 300.0 (dissolved)** As & Mn only Ferrous Iron 3500-FED (NO3 & SO4) field filtered TOC EPA 415.1 EPA 8260C MEE RSK-175 &= No MS/MSD 1 Liter filter Samplers: Client Project #: Metals J. Bernthal, K. Addis Vocs **YFA** 17513 Number of Matrix Date Time Sample ID Containers Z 1100 6W 1/17/11 GW-110117-PLZ-03ZA-0 X 1222 GW-110117-PP-5B-I-0 MS/MSD 1319 GW-110117-PLZ-017A-0 Trip Blank

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

1505

Compan

Relingushed by

Company:

Date & Time:

1505

Fosh Bernth

Comments/Special Instructions

More samples to follow

Relinquished by:

(Signature)

Company:

Date & Time:

Printed Name:

Received by:

Printed Name:

(Signature)

Company:

Date & Time:

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number:	Turn-around R	equested:	Standard		Page:)	of	ĺ					lytical Resources, Incorporated alytical Chemists and Consultants
ARI Client Company: Boeing		Phone:			Date: 1/18	/11	ice Present?	y		V		4	611 South 134th Place, Suite 100 Tukwila, WA 98168
Client Contact: Will Ernst					No. of Coolers		Cooler Temps:	60,e	5.8				206-695-6200 206-695-6201 (fax)
Client Project Name: 2-66 ERD I	M Perform	ance Samp	ling					Analysi	s Requeste	d			Notes/Comments ** dissolved metals are
Client Project #: 17513	Samplers: J. Berny	Samplers: J. Bernthal, K. Addis			VOCs EPA 826	TOC EPA 415.1	MEE RSK-175	Ferrous Iron 3500-FED	Metals (dissolved)** As & Mn only	Anions EPA 300.0 (NO_3 & SO_4)	VFA organic acids (by MI)	qDHC bacterial census (by MI)	field filtered S:Nonpreserved WA
Sample ID	Date	Time	Matrix	Number of Containers	OCs 8260C	C 15.1	E 175	s Iron FED	als /ed)** n only	ns 00.0 SO ₄)	A acids /II)	rial by MI)	
GW-110118-PP-1B-I-0	1/13/11	0834	GW	5	\otimes	X			×				
GW-110118-PL2-021A-0		0915	İ	13	×	\times	\times	X	X	X	×	×	500ml filtered
GW-410113-PL2-021A-1		0920		į3	X	\times	X	X	\times	X	X	X	500ml GHered
GW-110118-PL2-0218-0		1037		5	X	X			X				
GW-110118-PLZ-021C-0		[11]		5	\otimes	X			X				
GW-110118-PL2-031A-0		1203		12	X	X	\times	\times	X	\times	\times		
GW-110118-762-041AA-0		1255		4	X				X				
GW-110/18-PL2-008C-0	dament action	1333		4	\otimes				X				
GW-110118-PLZ-008B-0		1400	V	5	X	X			X				
Trip Blank	. ∜		-wear-stares	2	X								
Comments/Special Instructions	Relinqushed by:	1 n H		Received by: (Signature)		$\sum_{i=1}^{n}$		Relinquishe (Signature)	d by:			Received by: (Signature)	
No more Microbial Insights	(Signature) Printed Name:	2 1/1		Printed Name				Printed Nan	ne:			Printed Name	:
samples.	Josh!	Bernthal			1010	aid	sen						
	Company: EPI	-		Companý:	ARI			Company:				Company:	
	Date & Time:	11 14	140	Date & Time:	111	1440)	Date & Time	e:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Chain of Custody Record & Laboratory Analysis Request

ARI Assigned Number: SF22			equested:	Stan			Page:	1	of	1			À	Ana	ytical Resources, Incorporated
ARI Client Company: Boeing			Phone:					111	ice Present?			Assis			611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)
Client Contact: Will Ernst							No. of Coolers:		Cooler Temps:						Notes/Comments
Client Project Name: 2-66 ERD	M Pe	rform	ance Samp	oling							s Requeste		0	се	
Client Project #: 17513	Sampl J. T	T. Rernthal, K. Addis				VOCs EPA 8260C	TOC EPA 415.1	MEE RSK-175	Ferrous Iron 3500-FED	Metals (dissolved)** As & Mn only	Anions EPA 300.0 (NO ₃ & SO ₄)	VFA organic acids (by MI)	qDHC bacterial census (by MI)	field filtered S=Nongreserved Vox	
Sample ID	Da	ate	Time	M	atrix	Number of Containers)s 160C	15.1	<u> </u>	Iron ED	ls ed)** only	18 10.0 SO ₄)	acids	ial by MI)	
GW-110119-PP-3A-I-0	1/19	1/11	0830	6	N	5	\times	×			X				
GW-110119-PP-3B-I-0			0904			5	\otimes	\times			X				
CW-110119-PL2-010A-0			0937			5	X	X		·	X_				
GW-110119-PLZ-035A-0		<u> </u>	1022			9	X	<u>×</u>	\times	×	X				
GW-110119-PP-2B-0-0			1055			4	\otimes				X				
GW-110119-PP-2B-I-0			1119			5	\otimes	X			X				
GW-110119-PP-aB-I-1			1124			5	\bigotimes	X			$\vdash \times$				
GW-110119-PP-4B-I-0			1211			5	\otimes	\times			X				
GW-110119-PP-4B-0-0		/	1254	<u> </u>		4	\otimes				X				
Trip Blank	4			_		2 Received by:	\times			Relinquishe	ad by:	<u> </u>		Received by:	
Trip Blank Comments/Special Instructions No more samples to follow.	Relinqui (Signatu		71 TE	1)—	(Signature)	M	<u> </u>		(Signature)				(Signature)	
The state of the s	Printed	Name:	Bent	7		Printed Name:	allu	lum'	h (v	Printed Nar	ne:			Printed Name	J.
	Compar Compar	ηγ:	Lenvi	,		Company:	AR	\	<u></u>	Company:				Company:	
	Date &		1 13	34.	5	Date & Time:	V 1 F	13	, 4 G.	Date & Tim	e:			Date & Time:	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or co-signed agreement between ARI and the Client.

Sample Retention Policy: Unless specified by workorder or contract, all water/soil samples submitted to ARI will be discarded or returned, no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer. Sediment samples submitted under PSDDA/PSEP/SMS protocol will be stored frozen for up to one year and then discarded.

Boeing Plant 2, 2-66 IM Sheetpile Injection Monitoring Wells Water Levels

Well	Date	Time	Depth to Water (ft)
PL2-010A	4/18/11	10:29	9.98
PL2-017A	4/18/1	10:08	9.80
PL2-021A	4/18/11	11:03	10.46
PL2-021B	4/18/11	11:00	10.68
PL2-021C	4/18/11	10:57	10.43
PL2-031A	4/18/11	10:25	9.44
PL2-032A	4/18/11	10:00	10.35
PL2-035A	4/18/11	10:54	10.39
PL2-041AA	4/18/11	10:11	9,84
PL2-008B	4/18/11	10:21	10 32
PL2-008C	418111	10:17	11.67
PP-1B-I	4/18/11	10:51	10 81
PP-2B-I	4/18/11	10:45	12.07
PP-2B-O	411814	10:45	13.86
PP-3A-I	41,8111	10:35	9.98
PP-3B-I	4118/11	10:32	10.24
PP-4B-I	41.8/11	10:37	11.57
PP-4B-O	41,814	10:39	13.14
PP-5B-I	4/18/11	10:04	10,12

Boeing Plant 2, Seattle/Tukwila, Washington 4/18/11 Date Station FL2-C08B GU-110418 - PLZ-003B-0 Field Team: (Initials) Sample: ID IB Field Conditions Sunny & Clear **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump Initial Depth to Water (ft.) 10.71 Other:: Depth of Water Column Start Time 1144 3 Casing Volumes End Time 1222 1 Casing Volume Total Gallons Purged 2.5 Jellms Water Level Time NTU DO Temp. ORP Appearance Gallons pН Conductivity 1.48 1157 3.743 ms/cm 12.68 my 13.15 -15.5 10.71 clear 6,60 13.32 1200 9 660 3.733 mSkmc 9.81 1,23 19/ -ZZ 2 10.74 clear ms + 27.€ 3.734 mS/LC 8.86 1,05 13.40 10 78 lear 1203 6.58 1.1 3,736 - 5/LC r-9/ 0.95 -31,5 1206 13.46 1.3 6.55 771 10,81 low 1,5 6.81 13/2 13.61 =35.1 10.84 3.736 ms/c 0.36 1209 6.55 char 0.31 79/2 6.99 13.68 cher -38,4 10.87 1212 1.7 6.54 3737 ms/s 1215 1.9 6.51 13:70 10.89 change 6.55 3.741mS/c. 6.35 -41.3 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) : Time **Analysis** Bottle Type Preservative/Filtration Comments (3) 40-rnL VOA HC!, cool to 4°C Volatiles (8260B) 1217 TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C 1217 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C Metals (200.8&6010B) (1) 500 mL HDPE field filter, HNO₃ 1217 Census bio-flo&MI falcon tube cool to 4°C 122 Z **End Time** Comments / Exceptions: YES / NO YES/NO Presence of sinking product? Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date 4/8/11 PLZ-0036 Station Field Team: (Initials) -T6 CL-110418-PLZ-1008C-G Sample: ID Field Conditions SUMM & CLEAR **Purge Information** Purge Method : Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 12.32 Initial Depth to Water (ft.) Other: : Depth of Water Column Start Time 1224 3 Casing Volumes End Time 255 1 Casing Volume Total Gallons Purged 2,0 5 n lives Water Appearance Level ORP Temp. DO NTU Conductivity Gallons pН Time 12.32 -77.5 0.44 7/2 13.67 5.965m5/ 39/ 7.66 12:33 1232 -35, 6 0.44 3/2 13,68 216 5 43 9 7.75 1236 12.32 × 93.9 6.44 mg/L 1371 417 7.80 5,963 ms/ 1239 LL 140/1/04 12.32 599.1 13.64 1,37 7.85 1.3 1242 12.33 Cle--103,6 13.63 1.06 7.91 1,5 1245 1232 -106.2 13.64 0.87 7.41 1248 1.7 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Comments Preservative/Filtration **Bottle Type** Time Analysis NOT PRESERVES HCI sect to 4°C (3) 40-mL VOA Volatiles (8260B) 1250 H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) Dissolved gasses (MEE) cool to 4°C (3) 40-mL VOA (RSK-175) cool to 4°C Do NOT filter Ferrous Iron 250 mL amber (SM3500 Fe B-97) cool to 4°C (1) 500 mL HDPE Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly HNO₃ to pH <2, cool to 4°C Organics Acids (VFA) field filter, HNOs (1) 500 mL HDPE 1250 Metals (200.8&6010B) bio-flo&MI falcon tube cool to 4°C Census

End Time

Comments / Exceptions:

Presence of floating product?

YES / NO

Presence of sinking product?

YES / NO

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Reging Plant 2 Seattle/Tukwila Washington

Part			Boeing Plant 2, Se	eattle/Tukv	viia, vvasningii	Date	4)18/11	,	
Sample Method Submersible pump Bladder Bump	tation	PL2-04	IAA WILAA		Field Te				
Purge Information Purge Method Submersible pump Bigdies Brum, Purge Method Submersible pump Bigdies Brum, Purge Method Submersible pump Bigdies Brum, Purge Method Submersible pump Purge Method Submersible Subme	ample: ID	<u> ۱۱۵۵۱۶ - زیام</u>	5 - 12 - 14 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15 -	<u>, </u>					
Purge Method Submerable pump Biologic Rung Biologic Ru	L								
Sample Depth (R) Depth (_		Purge	Intorma	nou Uou	Cubmoroible num	ın.		
Sample Method(s) Peristattic pump Sample Method(s) Peristattic pump Sample Method(s) Method(s)	· · · · ·	2"		Pu			P		
12,54	· ·								
Start Time		10,39						•	
Casing Volume	· –				Start Time	1312		1	
Time Gallons pH Conductivity NTU DO Temp ORP Level Appearance 13 2 2 1 7 8 20 0.576\$Conductivity NTU DO Temp ORP Level Appearance 13 2 2 1 7 8 20 0.576\$\footnote{Conductivity NTU DO Temp ORP Level Appearance 13 2 2 1 7 8 20 0.5576\$\footnote{Conductivity NTU DO Temp ORP Level Appearance 13 2 2 1 7 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1						1347	1	1	
Time Gallons pH Conductivity NTU DO Temp. ORP Level Appearance 13 2 2 .7 5 20 0.976\$6 3.74 0.56 12.25 -22.2 6.39 Clear 1325 9.95 0.916 3.74 0.56 12.21 -26.0 6.40 Clear 1325 1.1 7.94 0.56 1.1 0.49 12.22 -27.0 16.92 Clear 1331 1.3 7.95 0.915 1.6 0.50 1.6 0.50 1.2.21 -21.3 16.43 Clear 1337 1.7 7.79 0.912 0.912 1.6 0.50 1.2.21 -31.3 16.44 Clear 1337 1.7 7.79 0.912 0.923 0.66 1.6 0.50 1.2.21 -33 16.44 Clear 1337 1.7 7.71 0.923 0.923 0.66 1.6 0.57 1.2.21 -33 10.45 Clear 1.6 0.50 1.6 0.50 1.2.21 -33 10.45 Clear 1.6 0.50 1.6		<u></u>		Tota	l Gallons Purged	2.3 gal	6.73] Water	
13 2	Time Gallons	nН	Conductivity	NTU	DO	Temp.	ORP		Appearance
1325 9 3.05 0.896 5/6 2.61 0.50 6 12.21 -26.0 26.0 12.31 12.31 -29.0 10.92 12.31 1331 1.3 7.95 0.915 5/6 2.16 0.50 7.2 2.2 -29.0 10.92 10.93 1.33 1.5 7.79 0.919 5/6 2.16 0.50 7.2 12.21 -30.3 16.44 0.65 7.79 0.919 5/6 1.61 6.51 7.2 12.29 -32.0 10.45 0.65 1.61 6.51 7.2 12.29 -32.0 10.45 0.65 1.61 6.51 7.2 12.29 -32.0 10.45 0.65 1.61 6.51 7.2 12.29 -32.0 10.45 0.65 1.61 0.50 1.61 0.55 1.61 0.55 1.61 0.55 1.61 0.55 1.61 0.55 1.61 0.55 1.61 0.55 1.61 0.55 1.65					0.56 87/4	12,25	-ZZ, Z	10.39	Clear
1328					0.50 1/2		-Z6,O	10.40	cher
133			1308 - Sk-C		6.49 05/2		- 29.0	10192-	cle_
1334							-21.3	10,43	che-
1337 1.7 7.75 0.923 0.56 1.67 6.51 7.2.29 -32.0 10.45 clear 340 1.9 7.71 0.927 0.63 0.54 7.2.29 -33.0 7.096 clear 340 1.9 7.71 0.927 0.63 0.54 7.2.29 -33.0 7.096 clear 340 1.9 7.71 0.927 0.63 0.54 7.2.29 -33.0 7.096 clear 340 1.9 7.71 0.927 0.63 0.54 7.2.29 -33.0 7.096 clear 340 1.9 7.71 0.927 0.63 0.54 7.2.29 -32.0 7.096 clear 340 1.9 7.71 0.927 0.63 0.54 7.2 0.696 341 1.0 1.0 1.0 0.64 0.64 0.64 0.64 340 1.0 1.64 0.64 0.64 0.64 0.64 0.64 0.64 340 1.0 1.64 0.64 0.64 0.64 0.64 0.64 0.64 340 1.0 1.64 0.64 0.64 0.64 0.64 0.64 0.64 340 1.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 340 1.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 340 1.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 0.64 340 1.64 0.64			0919-51,6		6.50 %	12,29	- 30.3	10,44	chi
Sample Information Sample Information			0973 m5/2 C		6 =1 m/2		-3Z.O	10.45	alear
Sample Information	700		10.123 4.07612 10.927 15/2 C/2 C		0.57 78		- 33 O	10.46	clear
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C	159-0 1-7	1. (1	0.74. 12.72						
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C Dissolved gasses (MEE) (RSK-175) Ferrous Iron (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE Organics Acids (VFA) Metals (200.8&6010B) 1345 (1) 500 mL HDPE Tield filter, HNO₃ Census Comments / Exceptions: Comments / Exceptions:									
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C			 				<u> </u>		
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C									
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C								<u> </u>	<u> </u>
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C							<u> </u>		
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C									·
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C							<u> </u>		<u> </u>
Analysis Time Bottle Type Preservative/Filtration Comments Volatiles (8260B) 1345 (3) 40-mL VOA HCl, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C						<u> </u>	<u> </u>	<u> </u>	<u> </u>
Volatiles (8260B) J345 (3) 40-mL VOA HCI, cool to 4°C TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C Dissolved gasses (MEE) (RSK-175) (3) 40-mL VOA cool to 4°C Ferrous Iron (SM3500 Fe B-97) 250 mL amber cool to 4°C Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C Organics Acids (VFA) (1) 500 mL poly field filter 0.45 micron filter, HNO₂ to pH <2, cool to 4°C Metals (200.8&6010B) 13.45 (1) 500 mL HDPE field filter, HNO₂ Census bio-flo&MI falcon tube cool to 4°C Comments / Exceptions:			pump / Submersi	ble pump	/ Bladder Pun	np / Other	Comments		
TOC (415.1) 250 mL amber H₂SO₄ to pH <2, cool to 4°C Dissolved gasses (MEE) (RSK-175) (3) 40-mL VOA cool to 4°C Ferrous Iron (SM3500 Fe B-97) 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Organics Acids (VFA) (1) 500 mL poly field filter 0.45 micron filter, HNO₃ to pH <2, cool to 4°C Metals (200.8&6010B) 13.4 S (1) 500 mL HDPE field filter, HNO₃ Census bio-flo&MI falcon tube cool to 4°C End Time 1347 Comments / Exceptions:									
Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C Ferrous Iron (SM3500 Fe B-97) 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) (1) 500 mL poly field filter 0.45 micron filter, HNO ₃ to pH <2, cool to 4°C Metals (200.8&6010B) 13.45 (1) 500 mL HDPE field filter, HNO ₃ Census bio-flo&MI falcon tube cool to 4°C End Time 1347 Comments / Exceptions:		1345				 			
Ferrous Iron (SM3500 Fe B-97) 250 mL amber cool to 4°C Do NOT filter			250 ML amber	+		+			
(SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C (1) 500 mL poly field filter 0.45 micron filter, HNO ₃ to pH <2, cool to 4°C Metals (200.8&6010B) (1) 500 mL HDPE field filter, HNO ₃ (1) 500 mL HDPE field filter, HNO ₃ Census bio-flo&MI falcon tube cool to 4°C End Time 1347 Comments / Exceptions:	Dissolved gasses (MEE) (RSK-175)		(3) 40-mL VOA	cool to 4°C					
Organics Acids (VFA) (1) 500 mL poly field filter 0.45 micron filter, HNO _s to pH <2, cool to 4°C Metals (200.886010B) Census bio-flo&MI falcon tube cool to 4°C End Time 1347 Comments / Exceptions:									
Organics Acids (VFA) (1) 500 mL poly HNO₃ to pH <2, cool to 4°C	Anions (EPA 300.0)		(1) 500 mL HDPE	1					
Census bio-flo&MI falcon tube cool to 4°C End Time 1347 Comments / Exceptions:	Organics Acids (VFA)			HNO₃ to pl	H <2, cool to 4°C				
Census bio-flo&MI falcon tube cool to 4°C End Time 1347 Comments / Exceptions:	Metals (200.8&6010B)	1345	(1) 500 mL HDPE	field filter, i	HNO ₃				<u> </u>
Comments / Exceptions:	Census		bio-flo&MI falcon tub	e cool to 4°C	; 				
	End Time	1347							
	Presence of floating p	oroduct?	YES / 100			oduct? Y	ES/NO	- 100 Miles	L CHILD THEFT
			11111						
	HINT HINT						The second second		
						111111	43.07		

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington

Station Sample: ID Field Condit	ions	PP-4B I GW-110418	- PP - 4R - I - O	sattle/Tuk		Date am: (Initials)	4/13/11 JB						
		Jumy #		forma	tion								
Well Diameter (Well Depth (ft.) Initial Depth to Depth of Water 3 Casing Volun 1 Casing Volun	Water (ft.) Column nes	2"	Purge	n forma Pu Tota									
						2.0351100		Water Level	Appearance				
Time	Gallons	pH_	Conductivity	NTU	DO DO	Temp. 14,5 ⅔	ORP	12.35	cley				
13 58	. 6	6.85	4,169 mS/ce		0.45 7/L	14.55	-43.7 -55.1	12.26	eler				
1401	- 8	683	4.196 mS/cm		6.52 -3/2	14.53	-61.1	12.27	clar				
1404	1.0	6.79	4,329 ~5/- °		0.56 12	14.55	-61.8	12.23	cler				
1407	1.4	6.77	4 222 1/2	<u>.</u>	6.59 ~ 5/2	14.59	-62.6	12.29	cla				
1410	157	0.77			0,37								
	•												
							-	ļ.——					
					ļ		<u> </u>	ļ					
								 					
					<u> </u>			 					
L	<u> </u>	<u> </u>	L		<u> </u>	<u></u>			<u> </u>				
Sample Me	ethod(s) ૢ:(Peristaltic	Sampl pump/Submersit	e Inforn de pump		np / Other							
Ana	lysis	Time	Bottle Type	Preserva	tive/Filtration		Comments						
	(8260B)	1414	(3) 40-mL VOA	HCI, cool to	4°C								
TOC (415.1)	1414	250 mL amber	H₂SO₄ to ph	H <2, cool to 4°C								
Dissoived ga (RSK			(3) 40-mL VOA	cool to 4°C									
	us Iron Fe B-97)		250 mL amber	cool to 4°C	Do NOT filter			_					
	PA 300.0)		(1) 500 mL HDPE	cool to 4°C	·								
	cids (VFA)	 	(1) 500 mL poly		.45 micron filter, I <2, cool to 4°C								
Metals (20	0.8&6010B)	14-14	(1) 500 mL HDPE	field filter, F	INO₃								
Cer	nsus		bio-flo&M1 falcon tube	cool to 4°C									
End Time		1418	1										
Presence	of floating (YES (NO Comme	ents / Exc Presence	eptions: e of sinking pro	oduct? YE	s/(NO)		111111111111111111111111111111111111111				
	HILL.				111				111111111111111111111111111111111111111				
	404		F										
		HI- 11		-			11-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	- CHILD SH	100				
		-	in the second					1144	10.1				
-						HIE THILL HIP	Carried III						
Notes: Where mu	itiple visits are rec	quired to complete se	ampling, parameters are to be o	hecked prior to	sampling for each visit.	Enter data under field o	comments.						

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date | 4/18/11 PP-4B-0 Station GW-110418-PP 48-0-0 Field Team: (Initials) JB Sample: ID Field Conditions Somy + Clear Purge Information Purge Method: Submersible pump 24 Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 12.83 Initial Depth to Water (ft.) Other:: Depth of Water Column 1423 Start Time 3 Casing Volumes End Time 145L 1 Casing Volume Total Gallons Purged 20 gallors Water Level Appearance ORP Temp. NTU DO Conductivity Gallons pΗ Time 12.84 0.46 13/ ~57.Q 2.91 4.255-28 /S.32 1433 1.70 179/ -59.3 12.94 15.31 1.71 0,50 9 74 4.341 nSL 1436 12.84 4.353~4. 1.53 0.52 15.28 -61.Z 6.76 1439 -62.3 79/ 12.87 15.20 4.360 m5/2° 1.37 0.56 1442 6.76 12.81 -63.0 Chir 15.23 0.58 7 1.89 445 6.76 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Comments Preservative/Filtration Time **Bottle Type** Analysis (3) 40-mL VOA HCl. cool to 4°C 447 Volatiles (8260B) H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C field filter, HNO3 144 (1) 500 mL HDPE Metais (200.8&6010B) bio-flo&MI falcon tube cool to 4°C Census

1451		mente / Eventions	
product?	YES (NO)	Presence of sinking product?	YES / (NO)
			- Mint - Mint - Maritim - Min - Hilling - Mint - Mint
	47-10011	101-	- min - many - manufacture - min -
iiiii.			ALITE THE THE PARTY OF THE PART
			100 100 100 100 100 100 100 100 100 100
			Chipaghia dente committee de la committee de l
			Digadot

Boeing Plant 2, Seattle/Tukwila, Washington Date 4/19/11 PP. 1B-I Station Field Team: (Initials) IG Sample: ID 6-W-110419-FF 18-I-0 **Field Conditions** Cloudy & Com Purge Information Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 10.33 Initial Depth to Water (ft.) Other:: Depth of Water Column Start Time 0704 3 Casing Volumes End Time 0300 1 Casing Volume Total Gallons Purged 30 3 lon 5 Water Appearance ORP Level Temp. NTU DO Time Gallons pΗ Conductivity 14179 43.0 1817 Bobbly / color 6.25 1242 11.8 11.07 mskm 0121 1.2 Bishbly Och-1027 1.71 1/2 12.53 ~57.2 629 11.36 in S/cm 6 236 1.4 1724 1,05 13/2 -5-83 12.53 10.27 6 a Dh la locker 6.33 11.28 mster 16.0 0127 1.6 075% 12.54 -62.7 10.27 6.31 11.60 pm/cm 14.0 1.3 0730 0 37 ~ 1/2 Bookly lodge 13.5 12.78 -68 4 10 27 11.90.28-6.49 2,0 0733 1195m3/-0.81 2% 12.85 -723 10.23 Poblator 13.4 2,2 6,54 0736 0.76 71k B. Ky Jela × 75.9 10.27 11 89 Sk-12.7 12.86 2.4 6.57 0739 29/2 -78.2 10.29 B. Hilly locker 1187 mSlen 0.71 12.91 6.57 074Z Sample Information Sample Method(s) : Peristaltic pump / Submersible pump / Bladder Pump / Other Comments Preservative/Filtration Time **Bottle Type** Analysis HCl. cool to 4°C (3) 40-mL VOA Volatiles (8260B) 07 43 250 mL amber H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 0743 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous !ron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) cool to 4°C (1) 500 mL HDPE Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C field filter, HNO₃ 0742 (1) 500 mL HDPE Metals (200.8&6010B) bio-flo&MI falcon tube cool to 4°C Census 0800 End Time Comments / Exceptions: YES /(NO Presence of sinking product? YES MO Presence of floating product? Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

	2-00 31		Boeing Plant 2, Se				1010 2010				
Station	Г	PLZ-021		zame/Tuk	viia, vvasiiiigi	Date	4/13/11				
Station Sample: ID			9- PLZ-021B-1	5	Field Te	am: (Initials)	JR				
Field Condi	ions	Clouds									
		7		Informa	tion				- 12-1		
MI-11 Di	(X	- 4L	ruige			Submersible pum	D				
Well Diameter Well Depth (ft.)		Z.1			.go momou	Bladder Pump					
Initial Depth to		9.85				Reristaltic Fump	\triangleright				
Depth of Water						Other::		1			
3 Casing Volur					Start Time	0867		1			
1 Casing Volur	ne l			Tota	End Time I Gallons Purged	3.4 Sall	***	†			
				1010	Callono I 4.30	•		Water			
Time	Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance		
0320	.8	7.05	5,012 ms/col	4,07	1.39 ~ 1	12.91	-73.0	9.92	clear		
(1823	1.0	7,00	5.042 S/cm	8,23	1.14 7%	12.92	-76.3	994	clear		
ወላንዮ	1.2	1.97	5.069 mSle.	5.00	0.9179/	12.99	- 79.1	9.96	Chan		
0829	1.4	-31.2	9.47	claser							
0832	1.6	6.90	5.235 ms/cmc	14.8	0.83 1/2	17.79	-820	9.78	clear		
0835	1,8	6.85	5.937 mgc=	9,92	0.797/L	12.93	- 36.7	9,99	chow		
0838	2.0	6.80	\$5.560 N/2	7.04	c. 10 %	12.50	~ 700	9.95	Chem		
0341	2.2	6.78	6.919 m Ska	811	6.63~1/2	1292	~80.1	9.99	C 12.00		
0844	2.4	6.76	7,114ms/c	4.30	6.60 1/2	12.95	-80.5	9.99	-c im		
0847	2,6	6.74	7.239ms/L-		C. 57 7/2	12.97	-8c.7	9.99	Cher		
0560	2.8	6.73	7,316,42	9118	6.557/2	12,96	-81.0	10.00	Clew		
0353	3.0	6,73	7.373mS/LE	4.0%	0.52%	13.00	-31,6	10.01	clen		
								 			
<u> </u>								 			
		51					 	 	<u> </u>		
		<u></u>	<u> </u>		<u> </u>	<u> </u>	1				
			Comp	e Inforn	ation						
0	. 4ll/-\	Daviotoltio	pump Submersi	ble numn	i Bladder Pun	n / Other					
Sample Me	etnod(s) :	Peristantic	punip /Submersii	ole bamb i	Diagaci (an	p, 0000					
Ana	lysis	Time	Bottle Type	Preserva	tive/Filtration		Comments				
	(8260B)	0855	(3) 40-mL VOA	HCI, cool to	4°C						
TOC	415.1)	08.55	250 mL amber	H₂SO₄ to pt	1 <2, cool to 4°C						
Dissolved a	asses (MEE)	0000	(3) 40-mL VOA	cool to 4°C		-					
(RSF	(-175)		(3) 40-IIIL VOA	000110 4 0							
	us Iron		250 mL amber	cool to 4°C	Do NOT filter						
	Fe B-97)		(1) 500 mL HDPE	cool to 4°C							
Anions (E	PA 300.0)	<u> </u>		1	45 micron filter,	 					
Organics /	Acids (VFA)		(1) 500 mL poly		<2, cool to 4°C						
Metals (20	0.8&6010B)	0A55	(1) 500 mL HDPE	field filter, F	INO₃	<u> </u>					
Ce	Census bio-flo&MI falcon tube cool to 4°C										
L		.1				<u> </u>					
End Time O9 00											
			Comm	ents / Exc	eptions:						
Presence	of floating	oroduct?	YES (NO)		of sinking pr	oduct? YE	S/MO				
		tiiti iine	- India								
	- united								The state of the s		
	1011							-1	- min min - min -		
								121111	TIGHT THE THE TANK TH		
11		111									

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington 419/11 Station Field Team: (Initials) CW-110419-PLZ-024-0 Sample: ID Field Conditions Classics + coci **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 9,91 Initial Depth to Water (ft.) Other: Depth of Water Column Start Time LYIOS 3 Casing Volumes 1 Casing Volume End Time 1045 Total Gallons Purged 7.0 12100 Water **ORP** Level Appearance NTU DO Temp. Time Gallons рΗ Conductivity 71.60 0 75 1/2 -73.4 2,173ms/c 9.99 0415 61 0.80 Th -755 2,16 in Ste 12.1 11.59 10.02 0918 6,54 6 49 2. 14 6 35/25 10.77 -77.0 11.69 0921 1.1 7.81 6.75 7/ 1,3 0424 6.46 2,166 mles 11.60 " 78, O 0.70 -7/ -78.4 10.09 6.74 2164 5/6 9.73 11.60 0427 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Preservative/Filtration Comments **Bottle Type** Analysis Time Volatiles (8260B) (3) 40-mL VOA HCI, cool to 4°C 0930 H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 0430 Dissolved gasses (MEE) (RSK-175) (3) 40-mL VOA cool to 4°C 0430 Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) 0430 cool to 4°C (1) 500 mL HDPE Anions (EPA 300.0) 0430 field filter 0.45 micron filter, Organics Acids (VFA) (1) 500 mL poly 0930 HNO₃ to pH <2, cool to 4°C field filter, HNOs (1) 500 mL HDPE Metals (200.8&6010B) 0,30 bio-flo&MI falcon tube cool to 4°C 500 mc Filmed Census 0930

	Çom	ments / Exceptions: Presence of sinking product?		
esence of floating product?	YES /MO	Presence of sinking product?	YES (NO)	
	100	entered the court of the		
The state of the s		and the state of t		
	v. 144.0274	~		

2-66 Sheetpile Structure IM Groundwater Sampling Field Data

2-00 3	nicethne	Boeing Plant 2, Se	eattle/Tuk	wila. Washingt	on .							
Station	PL2-01	7.4			Date	2/4/11						
Sample: ID	GW-110419	1-FLZ-0174-0,	1 (MS/MSD	Field Te	am: (Initials)	20						
Field Conditions		Cost	10.2				·					
		Purge	Informa	tion	-							
Well Diameter (in.)	Zi*	_	Pu	rge Method:		ηp						
Well Depth (ft.)					Bladder Pump Peristaltic Pumi	2						
Initial Depth to Water (ft.)	10.24				Other: :							
Depth of Water Column 3 Casing Volumes				Start Time	1307							
1 Casing Volume				End Time	1450		_					
			Tota	I Gallons Purged	25 gallon	<u> </u>	_ i Water					
Time Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance				
1322 .9	6.51	0.834m5/-	12.2	5.46 mg/L	9.09	87.9	6:37	Olen -				
1325	6,32	0.833,5/6,2	9.83	5.25 %	9.17	91.9	10.41	cle-				
1328 1.3	6,27	0.832 S/cms	531	5.03%	9,23	95.5	10,44	ch				
1331 45	6.25	0.879~5/-	2.80	4.87 %	9.24	58,4	10.46	den				
1334 1,7	6 22	0.874m5/c=	16.48	47211/2	9.27	100,9	10,48	cleur				
1337 1.9	15,0	0.872.5/-	7,62	4.62 %	9.33	103.4	10.52	che				
1340 2.1	6,18	0.370 25,0	5.84	4.53 1/2	9.34	106:0	10.51	cl				
-					<u> </u>		-					
	_					 		 				
	 	<u> </u>				<u> </u>						
	 	<u></u>	***	<u> </u>	· · · · · · · · · · · · · · · · · · ·	 	-					
						<u> </u>						
	 		_									
<u> </u>					· ·							
			e Inforn									
Sample Method(s)	: Peristaltic	pump Submersil	ole pump	Bladder Pum	p / Other							
Analysis	Time	Bottle Type	Preserva	tive/Filtration		Comments						
Analysis Volatiles (8260B)	1400	(3) 40-mL VOA	HCI, cool to		MSIMSD							
TOC (415.1)	<u> </u>	250 mL amber		I <2, cool to 4°C	l .		·					
	1400_	250 III alliosi	<u> </u>		MSMSD							
Dissolved gasses (MEE (RSK-175)	1400	(3) 40-mL VOA	cool to 4°C		M5/450							
Ferrous Iron		250 mL amber	cool to 4°C	Do NOT filter		•						
(SM3500 Fe B-97)	1400				MSIMSI							
Anions (EPA 300.0)	1400	(1) 500 mL HDPE	cool to 4°C	45 micron filter,	MSMSE)						
Organics Acids (VFA)	1400	(1) 500 mL poly		<2, cool to 4°C	MS/MSI)						
Metals (200.8&6010B)	1400	(1) 500 mL HDPE	field filter, H	NO ₃	MK/NSI) .						
Census	1400	bio-flo&MI falcon tube	cool to 4°C		Duplic		1430	1				
	1010	.1	1.		1 000							
End Time	1450						·					
		Commo	ents / Exc	eptions:								
Presence of floating	product?	YES (NO	Presence	of sinking pro	duct? YE	s (NO)	••••••					
					inus—un-							
		HEL THEFT SHEET	Tules	- Виби-Тико-о	111/1-1							
	***************************************	001 - 1200 - 110 - 111 -	100					10				
tion when the contract	a state put	1 1/1/4		And the Control of th								
	No Indiana - Indiana		1111		111111							

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date Station PLZ-021 C 4/80/11 Field Team: (Initials) Sample: ID 6W-1164ZO-PLZ-021C-0 J(B Field Conditions Clear + wol **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Well Depth (ft.) Bladder Pump Peristaltic Pump Initial Depth to Water (ft.) 11.23 Depth of Water Column Other: Start Time 3 Casing Volumes 1505 End Time 0337 1 Casing Volume Total Gallons Purged 2.7 3.160-5 Water DO ORP Level Appearance Time Gallons pН Conductivity NTU Temp. 1.547/ -157.0 23.10 Bl 72.5 13.57 11.34 7.53 Clear 0313 23.01 nSk-1.22 1/2 -166.0 OBIL 9 7.41 214 13.68 11.37 23.06 Sknº 1.03/2 13.75 0319 23.4 -173.1 11.39 7.67 0.90 % 1141 23.06 m S/c. 0852 13 11.9 13.30 -176,7 7.71 23.06 m S/L2 11.43 9.75 6,31 13.85 -179.0 cle 0825 15 7.74 -180.7 23.07 Ne 0.76 1388 9,37 11.45 0828 7.76 Sample Information : Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(6) Preservative/Filtration Comments Analysis Time Bottle Type HCl. cool to 4°C (3) 40-mL VOA Volatiles (8260B) 0332 NOT PRESERVED TOC (415.1) H₂SO₄ to pH <2, cool to 4°C 03 32 250 mL amber Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C Metals (200.8&6010B) 0832 (1) 500 mL HDPE field filter, HNO₃ bio-flo&MI falcon tube cool to 4°C Census

	~ Com	ments / Exceptions:	0		
Presence of floating product?	YES (NO)	ments / Exceptions: Presence of sinking product?	YES / (NO		
	Halifa Hirani — man	totalia diliti diliti			
COLUMN TOTAL CHARLES THE STATE	ideal idea of the control of the con			Inini	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			

		- the tree to			

2-66 Sheetpile Structure IM Groundwater Sampling Field Data

			Boeing Plant 2, Se	eattle/Tuky	wila, Washingt	on						
Station	[PL2-032A	\			Date	4/2d11					
Sample: ID	.		20-PLZ-032A-	0, 1	Field le	am: (Initials)	18					
Field Condit	lions [Cheur & C	Ge									
		<u> </u>	Purge	nforma	tion							
Well Diameter	(in.)	Z ¹		Pu	rge Method:		p					
Weil Depth (ft.)						Bladder Pump						
Initial Depth to	Water (ft.)	9.85				Peristaltic Pump	•					
Depth of Water					Start Time	Other		1				
3 Casing Volur					End Time	1025		i				
1 Casing Volur	ne			Tota	I Gallons Purged		8]				
					•	•		Water				
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance			
1035	,7	7.27	2.366 Ster	13.6	6.71 M	11.70	-49.9	9.99	clear			
1038	.9	7.18	2.363 mgc	13.0	0.85 14/2	11.80	-514	10,00	clear			
1041	1.1	7.14	2.363 respec	14.4	0.97 7/2	11. 83	-57.1	1001	dear			
1044	1,3		2,363 ms/c	10.66	1.13	11.39	-5-3.8	10.02	clear			
1047	1.5	7.09	2.364mS/ac	120	1.23 %	12,00	-599	10.03	clan			
1050	17	7,03	2.365 m5/cm	14,3	1.25 7/2	12.08	-22.8	10,09	clear			
1053	1.2	7,00	2,366 mS/cm	7.82	1.227/	12.02	-56,0	10,06	clear			
7033	11/-						<u> </u>	1				
							<u></u>					
				-								
							<u> </u>	<u> </u>				
\				_				<u> </u>				
												
		 										
					1							
Sample Me			pump / Submersi			np / Other	Comments					
	lysis	Time	Bottle Type (3) 40-mL VOA	HCl, cool to		0 15.16	(a)	111				
	(8260B)	1101	,,,			Deplicate		111				
TOC	(415.1)	1101	250 mL amber	H₂SO₄ to pr	1 <2, cool to 4°C	Dup licate	<u> </u>	14/				
Dissolved g (RSh	asses (MEE) (-175)	1101	(3) 40-mL VOA	cool to 4°C		Dup 1. cate	e e	III I				
	us Iron) Fe B-97)	1101	250 mL amber	<u> </u>	Do NOT filter	Dupli cal		1111				
Anions (E	PA 300.0)	1101	(1) 500 mL HDPE	cool to 4°C		Dup licks	e (a)	1111				
Organics	Acids (VFA)	1101	(1) 500 mL poly	field filter 0 HNO ₃ to ph	.45 micron filter,	Duplico	le a	977				
Metals (20	0.8&6010B)	1101	(1) 500 mL HDPE	field filter, h	INO₃	Qualical	2 Q 11	<u> </u>				
Се	nsus		bio-flo&MI falcon tube	cool to 4°C								
End Time)	1130						·	<u></u>			
Comments / Exceptions: Presence of floating product? YES / (10) Presence of sinking product? YES / (10)												
Simple Control	- HILLIAM								minus in Inch			

2-66 Sheetpile Structure IM Groundwater Sampling Field Data

•	_ 00 0	. [Boeing Plant 2, Se	attle/Tukw	rila, Washingto	in Dir	# 1		
ation	Γ.	PP-5B.I				Date	4/20/11		
ample: ID	10	-N-11042	0 PP-5B- I-0	<u> </u>	Field lea	am: (Initials)	J8		
eld Conditi	ons	Cherry				. <u> </u>			
=			Purge	nformat	ion		•		
	\ Г	0902	9-	Pur	ge Method : s	Submersible pum	р		
ell Diameter (eli Depth (ft.)	^{ln.)}	10 E				Bladder Pump	_		
itial Depth to \	Water (ft.)	10.60				Reristaltic Pump	\supset		
epth of Water						Other::		Ì	
Casing Volum					Start Time End Time	1223			
Casing Volum	ne L			Total	Gallons Purged		~?		
				Joian	Callerie v avg = a	-		Water	Annagranas
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Level	Appearance
	, , , T	9.51	0,214-S/cm	16.3	3.087/2	12.37	-73.0	10.63	clear
0417	, 9	9.34	1 zlins/er	5.10	Z.32 17/2	12.39	-19.5	10.67	cleye
0915		9,177	0 201 5/cm	6,75	2.70 3/2	17.40	16.4	10.69	Chan
0913	1.7	8 80	0. 210-Sec	6.90	2.33" 1/2	12.51	=/3.6	10.71	Char
0927	1,5	9.67	0,211 ms/cm	7.46	2.21 1/2	12.58	-17.0	10.72	cler
0930	2.5	8.37	0.23/m/2°	6.51	1.37 %	12.82	-44.6	127	Chin-
	2.7	824	0.23 7m S/ac	8,25	1.31 ~1/2	12.83	-45.3	10.78	Clear
0943	3.3	8.05	0.311 m Slam	4.77	1.08 11/4	12.94	-43.4	10.78	clay
09.49	3,5	7.86	6,541 ms/c=	5.58	098 276	12.99	-37.7	10.70	cless
0952		7.19	17.00 usile	2.52	0.49 -1/2	13.15	-54.9	10,81	cle-
1006	4.5	7,24	17.29 ms/cm	7.88	0.46 20/2	13,15	-61,5	10.82	ekar
1009	4.7	7.27	17.34 mS/c		-66.4	1082	cloud		
1012	4.9	7.30	17.41 S/cm	5.41	0.94 7/2	12,20	-70.1	1023	clan
1015	5,1	1, 30	1 2. 1 Decim	<u> </u>					
	 			 			<u> </u>		
	}	 	 	1		<u> </u>	<u> </u>	<u></u>	<u></u>
Sample M			pump / Submers		nation / Bladder Pur ative/Filtration	mp / Other	Comments		
	alysis	Time	Bottle Type	HCI, cool to		T			
Volatile	s (8260B)	1086	(3) 40-mL VOA						
TOC	(415.1)	1096	250 mL amber	H₂SO₄ to p	H <2, cool to 4°C	<u> </u>			
Dissolved (RS	gasses (MEE) K-175)		(3) 40-mL VOA	cool to 4°C	; 	ļ			
Ferro	ous Iron 0 Fe B-97)		250 mL amber		Do NOT filter				
Anions (EPA 300.0)		(1) 500 mL HDPE	cool to 4°C					
Organics	Acids (VFA)		(1) 500 mL poly	HNO₃ to p	0.45 micron filter, H <2, cool to 4°C				
Metals (2	00.8&6010B)	1096	(1) 500 mL HDPE	field filter,	HNO₃				
С	ensus		bio-flo&MI falcon tu	be coal to 4°C	<u> </u>				
End Tim	ne	1023			(#)				
Presence	of floating	product?	YES NO Comm	nents / Ex Presen	ceptions: ce of sinking p	roduct?	(ES/NO		101
			1111			11112-111111			
						and the second section is			

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington 4/20/11 Date PL2-031A Station Field Team: (Initials) G-W-110920- PLZ-031A-0 IS. Sample: ID Field Conditions & Clear **Purge Information** Purge Method: Submersible pump Z" Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump 9.37 Initial Depth to Water (ft.) Other: : Depth of Water Column Start Time 1133 3 Casing Volumes End Time 1230 1 Casing Volume Total Gallons Purged 1.6 30/lons Water Appearance Level **ORP** Temp. NTU DO Conductivity Gallons pН Time 947 0.81 7/2 clear 11.59 -16.7 0.601ms/c-c 143 6.63 7.99 ,6 6.601ms/cne 18.0 9.48 cleur 3.34 0.66 4,60 1146 .8 7.97 -18.4 6601m5/cm 4,50 1164 9.49 clear 0.58 1,0 1149 7.96 -19,0 9,50 449 1152 1.2 7.96 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Preservative/Filtration Comments Time Bottle Type Analysis (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) 1210 H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) 1210 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C 12 10 (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber 1210 (SM3500 Fe B-97) cool to 4°C (1) 500 mL HDPE Anions (EPA 300.0) 1210 field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) 1210 HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) 1210 bio-flo&MI falcon tube cool to 4°C Census 1230 **End Time** Comments / Exceptions:

Presence of sinking product?

YES / (NO)

YES (NO

Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date Station PP-3A-I Field Team: (Initials) FN-110420-PP-34-I-0 Sample: iD Field Conditions Som + COO! **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump Initial Depth to Water (ft.) 16.25 Other: Depth of Water Column 125% Start Time 3 Casing Volumes 133L End Time 1 Casing Volume Total Gallons Purged 2.5 gs/lows Water Level ORP Appearance NTU DO Temp. Time Gallons рН Conductivity -44,9 63 10.25 3, 114 m5/cm 2,85% 13.77 chan 7.08 1308 4.45 13.74 -50.3 10.26 7.09 3, 131, 5/ins 1.79 % c lear-1311 9 -534 3,128 S/c= 13.75 10.26 04 5763 1.49~% 1314 7,05 3.115m5/2° - 55.9 *b.* 27 5.57 1.33 13.72 C 4 7,03 1.3 1317 3.097~5/c.c 1627 1.23 7 -57.6 5,71 1320 115 7,03 13.69 10.28 7.46 1.15 -39.1 7,05 3.089m5/c 13.68 1323 1.7 <u>-60.0-</u> 10. 28 1324 3,079 - Sk-5,80 1.09 13.68 19 7.05 Sample Information : Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(3) Preservative/Filtration Comments Time **Bottle Type** Analysis (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) 329 H₂SO₄ to pH <2, cool to 4°C 250 mL amber TOC (415.1) 1329 Dissolved gasses (MEE) (3) 40-mL VQA cool to 4°C (RSK-175) Ferrous Iron 250 mL amber cool to 4°C Do NOT filter (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) 1329 bio-flo&MI falcon tube cool to 4°C Census 1331

YES (NO

Comments / Exceptions:

Presence of sinking product?

End Time

Presence of floating product?

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington Date 4/26/11 PP-38-I Station Field Team: (Initials) GW-110420-PP-3B-I-0 Sample: ID JB **Field Conditions** Some & Cont **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Peristaltic Pump Initial Depth to Water (ft.) 10,75 Other: Depth of Water Column Start Time 1334 3 Casing Volumes End Time 1410 1 Casing Volume Total Gallons Purged 1.7 gallings Water Level NTU DO Temp. ORP Appearance Gallons Time pΗ Conductivity 11,19m5/cm 0.57 12 -5516 8.37 13.88 344 10,82 -60.1 clean 1347 18 7.19 11.19 mS/c-11,4 6.56 13.85 10,85 230 724 11.19m5/cm 13.83 -139 10,35 Clev 1.0 0.58 1350 11.19 m5/cmc <u>13.88</u> -66,9 10.91 1353 1.2 7.26 9.13 0.55 deal Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Comments Preservative/Filtration Analysis Time **Bottle Type** (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) 1400 H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 250 mL amber 1400 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber (SM3500 Fe B-97) (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO3 Metals (200.8&6010B) 1400 bio-flo&MI falcon tube cool to 4°C Census

	_ Com	nments / Exceptions:	\sim	
resence of floating product?	YES (NO)	nments / Exceptions: Presence of sinking product?	YES/(NO)	······
a chia		- transmission - tran	- Init's	
· · · · · · · · · · · · · · · · · · ·		The second secon	Hard Control	1111 151111
		and the state of t		
Tana anni di di anti di		annum ill ill ill ill ill ill ill ill ill il	(1)	
1 111				

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington

Station Sample: ID)	PLZ-010	DA LI-PLZ-010A-0		Date 4/2/11 Field Team: (Initials) 06								
Field Cond		Partly S	bunny, cool		110101	eam. (midais)	1/5						
				Informa	4:								
Well Diameter		44	Purge	I nforma Pเ		Submersible pur Bladder Pump	np						
Ini tial Depth to De pth of Wate		9.11				Peristaltic Pum Other: :	Ď						
3 Casing Volu 1 Casing Volu					Start Time End Time	0157		7					
•				Tota	l Gallons Purged	2.294116	<u> </u>]					
Time	Gallons	pН	Conductivity	NTU	DO	Temp.	ORP	Water Level	Appearance				
0306	0.6	6,39	0.986 m S/cc	6.80	3.58 7/2	12.99	821	9.20	ctar				
0801	0.3	6.30	0.981 5/2	5.56	3.10 1/2	13.04	88.0	9.22	char				
0812	1.0	6,23	0.983 m5/m	6.29	2.85 ~1/2	12.86	93.4	9.23	Cher				
0815	1,2	6.18	0.982 S/c-	8.48	2.70 2/2	12.71	98.0	7.22	cker				
03/8	1.9	6.13	6 980 ~ S/c-c	7.16	2.58 7%	1245	1026	9.25	Cler				
0321	1,6	6,19	6 780 ms/c-	9.39	2.44 mg/	12.60	107.1	9, 26	ch-				
0824	1.8	6.07	0.976 ASKE	9.18	2.43 1/2	12.56	110.3	9.27	cher				
							10.3						
								-					
		1						1					
								- 1	-				
	<u> </u>							-					
		·											
						Q-							
	''				-			<u> </u>					
			·					<u> </u>					
Sample Me	thod(s)	Peristaltic	Samp pump / Submersi	l e Inform ole pump /		p / Other							
Anal	ysis	Time	Bottle Type	Preservati	ve/Filtration		Comments						
Volatiles		0327	(3) 40-mL VOA	HCI, cool to 4		<u> </u>	COMMISSION	·	` `				
TOC (4	(15.1)	0327	250 mL amber	H ₂ SO ₄ to nH	<2, cool to 4°C								
Dissolved ga	sses (MEE)	0341	(3) 40-mL VOA	cool to 4°C									
Ferrou (SM3500			250 mL amber	cool to 4°C	Do NOT filter								
Anions (El	PA 300.0)		(1) 500 mL HDPE	cool to 4°C				· · · · · · · · · · · · · · · · · · ·					
Organics A	cids (VFA)		(1) 500 mL poly		5 micron filter, 2, cool to 4°C								
Metals (200	.8&6010B)	0827	(1) 500 mL HDPE	field filter, HN	O ₃								
Cen	sus		bio-flo&MI falcon tube	cool to 4°C									
End Time		0332]	*									
Presence o	f floating p	roduct?	YES / NO	nts / Exce Presence	ptions: of sinking pro	duct? YES	S/NO's						
					31.7								
			min Illin India			Marian III III							
			1911111					- marine ille					
									and the same of th				
			111111			111							
								11111					

2-66 Sheetpile Structure IM Groundwater Sampling Field Data Boeing Plant 2, Seattle/Tukwila, Washington PLZ-035A Date 4/21/4 Station Field Team: (Initials) Σß Sample: ID GU-110421-PLZ-035A-0 **Field Conditions** Cartly Sunay Cost **Purge Information** Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) 9.25 Peristaltic Pump Initial Depth to Water (ft.) Other: Depth of Water Column Start Time 0834 3 Casing Volumes End Time 0117 1 Casing Volume Total Gallons Purged 2.2 5 11075 Water ORP DO Temp. Level Appearance Time Gallons Conductivity NTU 9.26 my -1.7 6.47 2.561 ms/a" 13.56 11.8 1.76 0848 1.0 19/2 <u>~7.1</u> 9.26 13.66 chear 2,567 ~S/a_ 406 0851 6.49 7,04 1,2 -11.6 2.566 ms/cm 7.38 0.72 13.59 9,26 chen 6,52 0854 1.4 -15:3 ~ 5/a" 9 26 0851 6,52 13.3 6.35 13.65 2.566 16 2,568 m Sich 13.68 3.69 6.79 -18.9 9.27 0900 1.3 6,54 Sample Information Peristaltic pump / Submersible pump / Bladder Pump / Other Sample Method(s) Comments Preservative/Filtration Time Bottle Type Analysis (3) 40-mL VOA HCI, cool to 4°C Volatiles (8260B) 0907 H₂SO₄ to pH <2, cool to 4°C TOC (415.1) 0907 250 mL amber Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C 0907 (RSK-175) Ferrous Iron cool to 4°C Do NOT filter 250 mL amber 0907 (SM3500 Fe B-97) Anions (EPA 300.0) (1) 500 mL HDPE cool to 4°C field filter 0.45 micron filter, (1) 500 mL poly Organics Acids (VFA) HNO₃ to pH <2, cool to 4°C 0907 (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) bio-flo&MI falcon tube cool to 4°C Census

Presence of floating product? YES NO Presence of sinking product? YES / VES /

End Time

19317

2-66 Sheetpile Structure IM Groundwater Sampling Field Data

Boeing Plant 2, Seattle/Tukwila, Washington Date Station PP-20 I Field Team: (Initials) Sample: ID (-W-110421-PP-28-I-O.) Field Conditions SURING & CCEL **Purge Information** Z 1 Purge Method: Submersible pump Well Diameter (in.) Bladder Pump Well Depth (ft.) Reristattic Pump Initial Depth to Water (ft.) 9.57 Other: Depth of Water Column 3 Casing Volumes Start Time 0932 1 Casing Volume End Time /626 Total Gallons Purged 2 7 millors Water **ORP** Level NTU DO Appearance Time Gallons pΗ Conductivity Temp. 14 4,846 mS/cms 13.5 0956 1,54 19/2 -54.8 9.66 6.84 13.70 11.3 1.6 4.874 m S/cm 1.2477/2 13.73 755.3 6.83 9.66 045 1.05 7/ 9.56 1.8 6.83 4.883 SLC 13.86 -56.5 7.67 1006 1005 clar 2,6 4,876. S/LO 12,3 0,94 MIL 267 6.34 12.86 -578 9.86 -58.7 Cleir 6.84 886 m5/c 0.86 9.08 1008 Z. Z 13.85 2.4 0.78 20/2 clear 6 34 9.29 13.81 -59.6 2.69 1011 Sample Information Sample Method(s) Peristaltic pump \Submersible pump / Bladder Pump / Other Time **Bottle Type** Preservative/Filtration Comments Analysis Volatiles (8260B) (3) 40-mL VOA HCl, cool to 4°C 1021 1015 TOC (415.1) H₂SO₄ to pH <2, cool to 4°C 250 mL amber 1015 Dissolved gasses (MEE) (3) 40-mL VOA cool to 4°C (RSK-175) Ferrous Iron (SM3500 Fe B-97) 250 mL amber cool to 4°C Do NOT filter (1) 500 mL HDPE cool to 4°C Anions (EPA 300.0) field filter 0.45 micron filter, Organics Acids (VFA) (1) 500 mL poly HNO₃ to pH <2, cool to 4°C (1) 500 mL HDPE field filter, HNO₃ Metals (200.8&6010B) Dolicate @ 1021 015 Census bio-flo&MI falcon tube cool to 4°C **End Time** 1026 Comments / Exceptions: Presence of sinking product? Presence of floating product? YES (NO)

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments

2-66 Sheetpile Structure IM Groundwater Sampling Field Data

Boeing Plant 2, Seattle/Tukwila, Washington															
Station		PP-2B-			e: au m	Date	4/21/11								
Sample: ID	<u>. </u>	GW-1104	21-PP-28-C-	0	Field Te	am: (Initials)	<u>a</u> r								
Field Condit	ions	(L)e	(ve)												
			Purge	Informa	tion										
Well Diameter	(in.)	2			rge Method:	Submersible pum	р								
Well Depth (ft.)						Bladder Pump	_								
Initial Depth to		10,40				Reristaltic Pump									
Depth of Water	Column				,	Other::	<u> </u>	1							
3 Casing Volum					Start Time	1032		ļ							
1 Casing Volum	ne				End Time	1115									
				Tota	Gailons Purged	1.9 galles	···	Motor							
Time	Gallons	рН	Conductivity	NTU	DO	Temp.	ORP	Water Level	Appearance						
1041		7.11	3.329 5/L2	31.7	1.34 79/2	14.44	z. 3, 4	10,15	clear						
- 	اله ا			21,4	1,23 %	14.57	23.9	10.47	clar						
1044	.15	7,08	3.330/_		1.16 1/2	-									
1047	1,0	7,0%	3.330.56.3	16.9		14.61	73.1	10.48	clear						
1050	1.2	7.04	フィンファカン/~)			14.62	70.4	10.49							
1053	1.4	7.03	3.33 to m Sten	9.62	1.63 ~/_	i4.54	17.4	10.50	clear						
								 							
															
		-													
									11						
l							-								
 															
 															
Sample Me	thod(s)	Peristaltic	Sampl pump / Submersit	e Inform ble pump /		p / Other									
Anai	veie	Time	Bottle Type	Preservat	ive/Filtration		Comments								
Volatiles		1106		HCI, cool to											
		1106	* *		<2, cool to 4°C										
TOC (4		ļ	250 IIIL ambei	1,120 C4 10 PF1	2,0011040										
Dissolved ga (RSK-	sses (MEE) -175) 	}	(3) 40-mL VOA	cool to 4°C	<u></u>										
Ferrou (SM3500	s Iron Fe B-97)		250 mL amber	cool to 4°C	Do NOT filter										
Anions (El	PA 300.0)		(1) 500 mL HDPE	cool to 4ºC											
Organics A	cids (VFA)				45 micron filter, <2, cool to 4°C										
Metals (200	.8&6010B)	1106	(1) 500 mL HDPE	field filter, HI											
Cen		1.06	bio-flo&MI falcon tube	coal to 4°C				-							
L Cen			S.O HOCKET TOLOGIT TODO	1555, 10 7 0		L									
End Time		1115					···								
			Comme	nts / Exc	eptions:		<u>~</u>		-						
Presence of	Presence of floating product? YES / NO Presence of sinking product? YES / NO														
in mire	illi iya -					-01-1									
		1					100								
						1.111	- 1111								
					J	1000									
						1									

Notes: Where multiple visits are required to complete sampling, parameters are to be checked prior to sampling for each visit. Enter data under field comments.

ARI Assigned Number:	Turn-around	Requested:			Page:	1	of	١		4	12	Analytical Resources, Incorporate Analytical Chemists and Consultar 4611 South 134th Place, Suite 100		
ARI Client Company: Boeing		Phone:				18/11	ice Prese Coole	/	′	-		Tukwila	, WA 98168 	
Client Contact: Will Erns	+				No. of Coolers:	1	Temps	: 10 ₁						
Client Project Name: 2-66 ERO	IM Perform	ance Some	وانهج		463	7 To	P 6 -	Analysis R	equested	_			Notes/Comments XX dissolved metals are	
Client Project #: 17513	Samplers:	nthal			YOC >	TOC PA 415.	Metals (d. sured) w As & Ha only				:		field filtered & Monpresented VOAs	
Sample ID	Date	Time	Matrix	No. Containers	ەر. م	<u>ئا</u>	V 60) A							
G-W-110418-PLZ-003B-0	4 listu	1217	H20	5	Х	X	X							
GU - WOALS-PLZ-008C-0	4/18/4	1250	420	4	8		×							
GW-110418-PLZ-041A4-0	4 lesly	1345	H,0	4	X	<u> </u>	X							
GW-10418-PP-48-2-0	4/18/4	1414	H2O	5	×	X	X							
GU-110418-11-48-0-0	1	<u> </u>	14-50	4	人		X					-		
TRIP BEANK	4/8/11		H'O	<u>z</u>	X		-				-			
<u> </u>	<u> </u>			<u> </u>	<u> </u>	 					- 6			
	<u> </u>	<u> </u>												
		ļ		,	 					<u>. </u>				
Comments/Special Instructions	Relinquished by			Received by:	$\stackrel{1}{\longrightarrow}$	<u></u>		Relinquished	by:			Received by	y:	
Comments/special instructions	Structions (Signature) (Signature)					19 11	<u> </u>	(Signature)	et:		.	(Signature) Printed Nan	ne:	
	Printed Name: Tesh Benthal Printed Nam				VOV	M	oln					Company:		
	Carronnell	EPI	···	Company:	2	100		Company:						
Date & Time: Date & Time:				Date & Time:	Date & Time:			:	Date & Time:			e: /		

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless afternate retention schedules have been established by work-order or contract.

ARI Assigned Number: SSG4		Page: of					Analytical Resources, Incorporated Analytical Chemists and Consultants						
ARI Client Company: Boeing		Phone:			Date:	+liali1	Ice Prese	nt?		-	\mathscr{V}	4611 Sc	outh 134th Place, Suite 100 , WA 98168
Client Contact: WILL ERUS					No. of Coolers:		Coole Temps						5-6200 206-695-6201 (fax)
Client Project Name: Z-66 ERT) IM Per (simence '	Sumpling		m			Analysis F		S .	0	05	Notes/Comments KL chissolved metals are
Client Project #: \75\3	Samplers:	ern/Mex)			YOC,	TOC EPA 41	RSK-17	3600-fe0	Metals discoved) ***	Anibas EPA 300.0 (NO. 4 Say)	VED VED	cheur (e	field filtered 8=Norpesserved LOAs
Sample ID	Date	Time	Matrix	No. Containers	200C	12.1	3		ed yet	300.0 500)	الم در ملا	(6-141)	KI = NOT MSIMSP
GN-11044-18-IB-I-0	4 Ala	0743	GW	5	X	×			×				
CW-110419-PLZ-021B-0	Alali	0855	GW	5	X	X			X				
GW-110419-PLZ-021A-D	419/11 0930 GW 13				X	X	X	×		*	x	4	Soomi FILTERED
GW-11049-PLZ-017A-0					X	X	X	<u>×</u>	<u> </u>	X	x	K	MSTMSD IL FLIEDLE
GW-110419-PLZ-0174-1	4/19/4	1430	(M)	1								X	IL FILTERED
TRIP BLANK	4/8/11		*	2	X				 				
											ļ	ļ	
					<u> </u>						ļ		
					ļ					<u> </u>			
										<u> </u>			
Comments/Special Instructions No more Microbial Insights	Relinquished by: (Signature)	Received by: (Signature)	1.	100	⇒ .	Relinquished (Signature)	l by:			Received by (Signature)	/: :		
Samples.	Printed Name Printed Name				Her	Mills	an)	Printed Nam	e:			Printed Nan	18:
	Company: Company:						1	Company:				Company:	
More Samples to Follow	EPT #10 Date & Time; 4 K 11 1540 4 19				Date & Time:			: 	Date & Time:);	

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

ARI Client Company: Boeing Phone: Client Contact: U.L. ERNST Client Project Name: 2-66 ERD IM Performance Sampling						-6/11	rnt? \(\frac{1}{2} \) S: \(\lambda \) Analysis Requested				Analytical Resources, Incorporated Analytical Chemists and Consultant 4611 South 134th Place, Suite 100 Tukwila, WA 98168 206-695-6200 206-695-6201 (fax)		
Client Project #: 17513 Sample ID	Samplers: J. Be		Matrix	No. Containers	EPA 82WC	TOC ETA 45.1	MEE PSK-175			(NO-8-504)	VKA Organic acids (by MI)		Notes/Comments ## dissolud matals are field filtred @Non Preserved VOR's
GW-110420-PLZ-021C-0	4/20/11	0832	GU	5	\otimes	×			X				
GW-110420-19-58-I-0	4/20/11	1016	GW	5	×	×			X				
6W-110476-PLZ-032A-0	4/20/n	1101	660	12	X	X	X	X.	X	X	X		
GW-110420-PLZ-03ZA-1					X	×	×	×	X	X	X		
GW-110420-112-034-0	4/20/11	1210	6U	12	X	X	X	K	X	X	X		
G-W - 110420-PP-34-I-0	4/20/4	1329	GW	5	×	义			X				
GW - 11 0420-PP-38-I-0	1 .	1450	GW'	5	X	火			X			,	
Trip Blank	4/18/11	-		2	X								
Comments/Special Instructions More Sumples to follow	Relinquished by: (Signature)	71	10	Received by: (Signature)	7		^_	Relinquished (Signature)	d by:			Received by (Signature)	ř.
	Printed Name Printed Name Printed Name Printed Name						reeter	Printed Nam	98:			Printed Nan	ne:
	Company: Company:							Company:				Company:	
	Date & Time: 4/20/1		Date & Time:	20/// /5/0 Date & Time:			Date			D:			

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

ARI Assigned Number:	Turn-around	Requested:			Page:	1	of	1	7		Analytical Resources, Incorpor Analytical Chemists and Consu		
ARI Client Company: Bowing		Phone:			Date:	4/2/1	Ice Prese	nt? 7		=		Tukwila,	uth 134th Place, Suite 100 WA 98168
Client Contact: Will Ernst					No. of Coolers:		Coole Temps	<u> </u>	9			206-695	-6200 206-695-6201 (fax)
Client Project Name: Z 46 ER	D IM PEAR	omunie!	tump1.hg		- د	<u>m</u> ,		Analysis F	P C 3				Notes/Comments Haissoired metals are
Client Project #: 17513	Samplers:	enthal			8200C	TOC ERA 415.1	NE6 83N-175	Ferray Tra	Medals (dissulad)*+				Ciesa Alfrancol
Sample ID	Date	Time	Matrix	No. Containers		ئـز	~	Ferrors Iron	1)*+			·	
GW-110421-PLZ-018A-8	4/21/4	0827	GW	5	X	X			X				
GW-110421-PLZ-0352-0	4/2/11	0907	GW.	٩	X	X	X	У.	X				-
GW-110421-PP.28-I-0	4/21/11	1015	en,	5	X	*		-	×				
GW-110421-PP-28-I-1	4/2/1	1021	دان	5	X	X	<u> </u>		×			-	
6W-1104Z1-PPZB-0-B	4/2.1.	1106	GW	4	X				X		_		
Trio Blank	4/19/4			2	X								
Comments/Special Instructions No Man Samples to follow.	Relinquished by:	IN BO	 7	Received by: (Signature)		1		Refinquished (Signature)				Received by (Signature)	
as your member to remove.	Printed Name:	H Bernthe	1	Printed Name:	WYW a	MI	Acr	Printed Nam	e:			Printed Nam	g.
	Company:	er Er			121			Company:				Сотрапу:	
	Date & Time:		245	Date & Time:	21/11	(2	45	Date & Time	F			Date & Time	·

Limits of Liability: ARI will perform all requested services in accordance with appropriate methodology following ARI Standard Operating Procedures and the ARI Quality Assurance Program. This program meets standards for the industry. The total liability of ARI, its officers, agents, employees, or successors, arising out of or in connection with the requested services, shall not exceed the Invoiced amount for said services. The acceptance by the client of a proposal for services by ARI release ARI from any liability in excess thereof, not withstanding any provision to the contrary in any contract, purchase order or cosigned agreement between ARI and the Client.

Sample Retention Policy: All samples submitted to ARI will be appropriately discarded no sooner than 90 days after receipt or 60 days after submission of hardcopy data, whichever is longer, unless alternate retention schedules have been established by work-order or contract.

ATTACHMENT D DATA VALIDATION REPORTS

TECHNICAL MEMORANDUM

Date:February 7, 2011Project No.:013-1646-011.700.01To:Will ErnstCompany:The Boeing Company

From: Jill Lamberts, Staff Environmental Scientist

Kent Angelos, Principal and Project Director

cc: Jeff Dengler and Doug Kunkel, EPI Email: jill lamberts@golder.com

RE: BOEING PLANT 2 - 2-66 ERD IM - DATA VALIDATION QA/QC REVIEW - JANUARY 2011

SAMPLING ROUND

1.0 INTRODUCTION

A total of 24 water samples (including 2 field duplicates and 3 trip blanks) were collected January 17-19, 2011 as part of the Boeing Plant 2 Groundwater Interim Measures Work Plan for 2-66 ERD IM (EPI, 2008). Samples were analyzed by Analytical Resources Incorporated (ARI) of Tukwila, Washington, Microbial Insights of Rockford, Tennessee, and Microseeps of Pittsburg, Pennsylvania for the following parameters:

- Volatile Organic Compounds (VOCs) by EPA Method 8260C
- Total Organic Carbon (TOC) by EPA 415.1
- Dissolved Gases (Methane, Ethane, and Ethene MEE) by Modified RSK 175
- Dissolved Metals (Arsenic and Manganese) by EPA Methods 200.8 and 6010B
- Ferrous Iron by SM 3500 FeD
- Anions (N-Nitrate and Sulfate) by EPA 300.0
- Organic Volatile Fatty Acids (VFAs) (Pyruvic, Lactic, Acetic, Propionic, and Butyric Acids)
 by ion chromatography by Microseeps
- Bio-Dechlor Bacterial Census by qDHC (RT-PCR) dehalococcoides by Microbial Insights

With the exception of the bacterial and metabolic acids analysis, samples were analyzed in accordance with procedures described in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (USEPA SW-846, 3rd edition) 300.0, 415.1, 8260C, 6010B, metals, EPA Method 200.8, Revision 5.5; Determination of Trace Elements in Water and Wastes by Inductively Coupled Plasma-Mass Spectrometry, Standard Methods for the Examination of Water and Wastewater (20th Edition).*

The bacterial and metabolic acids analyses were analyzed in accordance with the *Microbial Insights and Microseeps Standard Operating Procedures*.

2.0 SAMPLE DELIVERY GROUPS, SAMPLES AND ANALYSES

Samples were analyzed and results reported by the laboratory in batch numbers as summarized below:

SE88, P1101183, 0371A (VOCs, TOC, MEE, Ferrous Iron, Dissolved Metals, Anions, VGAs, and qDHC):

GW-110117-PL2-032A-0 GW-110117-PP-5B-I-0 GW-110117-PL2-017A-0

Trip Blank

SF09, P1011182, 0371A (VOCs, TOC, MEE, Ferrous Iron, Dissolved Metals, Anions, VFAs, and qDHC):

GW-110118-PP-1B-I-0	GW-110118-PL2-021A-0	GW-110118-PL2-021A-1
GW-110118-PL2-021B-0	GW-110118-PL2-021C-0	GW-110118-PL2-031A-0
GW-110118-PL2-041AA-0	GW-110118-PL2-008C-0	GW-110118-PL2-008B-0
Tain Diami.		

Trip Blank

RS52 (VOCs, TOC, and Dissolved Metals):

GW-110119-PP-3A-I-0 GW-110119-PP-3B-I-0 GW-110119-PL2-010A-0 GW-110119-PL2-035A-0 GW-110119-PP-2B-O-0 GW-110119-PP-2B-I-0 GW-110119-PP-4B-O-0

Trip Blank

Quality assurance/quality control (QA/QC) reviews of laboratory data were performed in the laboratory in accordance with the laboratory quality assurance program plan. The data validation QA/QC review focused primarily on laboratory result summary sheets and quality control summary sheets to ensure that work plan data quality objectives were met for the project.

Data validation was conducted in accordance with the criteria outlined in the National Functional Guidelines for Organic Data Review (EPA, 2008) and the National Functional Guidelines for Inorganic Data Review (EPA, 2010), modified to include method specific requirements of the laboratory analytical methods and *Interim Measure Work Plant for 2-66 Sheetpile, Boeing Plant 2 Seattle/Tukwila (EPI, 2008)*. Raw data sheets were reviewed as necessary to confirm conditions reported and to support application of qualifiers to analytical results

The validation level for the data is Level I, as described in the QAPP (EPI, 2008). The following is a summary of quality control elements associated with each analytical fraction and the status of that element as a result of the data validation process.

3.0 SAMPLING, DOCUMENTATION AND REPORTING

Sample acknowledgements, chain-of-custody, request forms and data package completeness were evaluated with the following noted:

■ SDG SF09: Cooler receipt form indicates that two of two VOC vials for the Trip blank had small air bubbles. No action was required since the samples were all analyzed within the recommended holding time.

- SDG SF22: Cooler receipt form indicates that two of two VOC vials for the Trip blank, and three of three VOC vials for GW-110119-PP-2B-I-0 had small air bubbles. No action was required since the samples were all analyzed within the recommended holding time.
- Multiple SDGs: Some samples were preserved in the lab instead of the in the field or analyzed within a shortened hold time. No action was required since all samples were analyzed within recommended holding times.
- SDG SF09: The sample time for GW-110118-PL2-031A-0 was listed as 1203 on the chain of custody, but as 1155 on the bottles. The field staff was contacted and confirmed that the correct sample time is 1155.
- Results for volatile organic compound 1, 1, 2-trichloro-1, 2, 2-trifluoroethane are reported in a truncated format (1, 1, 2-trichloro-1, 2, 2-trifluoroe) due to ARI report format. No action was taken.

4.0 VOLATILE ORGANIC COMPOUNDS

Level 1 summary data packages were provided for the VOC analysis. The items reviewed during validation are summarized below.

4.1 Analytical Methods – acceptable

Samples for VOC analysis were analyzed by gas chromatography/mass spectrometry (GC/MS) using EPA SW846 Method 8260C. The QAPP lists the method for VOCs as 8260B. ARI updated their methods due to a NELAP audit and a memo dated 6/1/2009 was sent to Boeing, EPI, and Golder Project Managers informing them of the change.

4.2 Sample Holding Times and Preservations – acceptable

All samples were prepared and analyzed within 14 days of sample collection (preserved water samples) or within 7 days of sample collection (unpreserved water samples).

4.3 Laboratory Reporting Limits – acceptable

The laboratory achieved the reporting limits (RLs) required by the approved quality assurance project plan (EPI, 2008) with the following exceptions:

Quality assurance project plan (QAPP) reporting limits were not met for nine compounds. A review of current ARI detection limits shows that both method and reporting limits were updated (as of 6/1/2009). Compounds that do not meet QAPP stipulated reporting levels (RLs) are identified in the following table:

Table 1: 2-66 IM ERD VOC Reporting Limits

0	OADD Table O.D. a (see !!)	Lab Day anta d Di a confi
Compound	QAPP Table 6 RLs (µg/L)	Lab Reported RLs μg/L
Chloromethane	0.2	0.5
Bromomethane	0.2	1.0
Methylene Chloride	0.3	0.5
Acetone	3.0	5.0
2-Butanone	1.0	5.0

Compound	QAPP Table 6 RLs (μg/L)	Lab Reported RLs μg/L
Vinyl Acetate	0.5	1.0
2-Chloroethylvinylether	0.5	1.0
4-Methyl-2-Pentanone	1.0	5.0
2-Hexanone	1.0	5.0

- No action was taken; this change in the RLs was sent by ARI to Boeing, EPI, and Golder Project Managers on June 1, 2009 and subsequently approved and implemented as part of the June 2009 QAPP compendium (Golder, 2009).
- Trichloroethene is listed twice in QAPP Table 5. No action was taken.
- The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds.

4.4 Instrument Calibration

Calibration review is not required under the QAPP; however, the lab provided information on the calibration performance in the case narratives. All of the calibration criteria were met with the following exception:

- SDG SE88: The continuing calibration standard (CCAL) on was out of control for 2-chloroethylvinylether. Associated samples were qualified as estimated (J/UJ) for this analyte.
- SDG SF22: The CCAL on 1/21/2011 was out of control for 2-chloroethylvinylether. Associated samples were qualified as estimated (J/UJ) for these analytes.

4.5 Blank Contamination – acceptable

The method blanks and trip blanks were free of contamination.

4.6 Surrogate Recovery – acceptable

All surrogate recoveries were within control limits.

4.7 Matrix Spike Compound Recovery

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) analysis was performed on GW-110117-PL2-017A-0 in SDG SE88. In SDGs where MS/MSD data are not available refer to LCS/LCSD and field duplicate data for precision and accuracy information. All MS/MSD recoveries and relative percent differences (RPDs) were acceptable with the following exception:

■ SDG SE88: MS/MSD recoveries were out of control low for 2-chloroethylvinylether and styrene. The parent sample was qualified as estimated (U/UJ) for this analyte.

4.8 Laboratory Control Sample Recovery – acceptable

Laboratory control samples (LCS) were evaluated using control limits listed in Table 4 of the QAPP (EPI, 2008) and recently updated CLs on the ARI website. All LCS/LSCD recoveries and relative percent differences (RPDs) were acceptable.

5

4.9 Field Duplicate Sample Analysis – acceptable

Field duplicate samples were collected and analyzed as follows:

Table 2: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SF09	GW-110118-PL2-021A-0	GW-110118-PL2-021A-1
SF22	GW-110119-PP-2B-I-0	GW-110119-PP-2B-I-1

Field duplicate analysis criteria were met.

5.0 METHANE, ETHANE, AND ETHENE (MEE)

The laboratory provided Level I summary forms for compounds methane, ethane, and ethene. The items reviewed during validation are summarized below.

5.1 Analytical Methods – acceptable

Samples for MEE parameters were analyzed using EPA Method RSK-175 (Modified).

5.2 Sample Holding Times and Preservations

All samples were prepared and analyzed within the recommended holding times 14 days from collection to analysis. Please note that the QAPP stipulates that the hold time for MEE is 7 days. The lab was contacted to verify the hold time 5/11/2009. The lab responded that the QAPP was incorrect and the true hold time is 14 days. No action required other than to note.

5.3 Laboratory Reporting Limits – acceptable

The laboratory achieved the reporting limits (RLs) required by the QA Plan with the following exception:

- Table 5 of the QAPP stipulates a reporting level of 1.0 μg/L for methane, ethane, and ethene. The ARI reporting limits are 0.7 μg/L for methane, 1.2 μg/L for ethane, and 1.1 μg/L for ethane. EPI's project manager was contacted and approved the slightly higher limits [personal comm. J. Dengler]. No further action was taken other than to note this.
- The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds. No action was taken.

5.4 Blank Contamination – acceptable

The method and equipment blanks were free of target compounds.

5.5 Surrogate Recovery – acceptable

All surrogate recoveries were within control limits.

5.6 Matrix Spike Compound Recovery – *acceptable*

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) analysis was performed on GW-110117-PL2-017A-0 in SDG SE88. In SDGs where MS/MSD data are not available refer to LCS/LCSD and field duplicate

data for precision and accuracy information. All MS/MSD recoveries and relative percent differences (RPDs) were acceptable.

5.7 Laboratory Control Sample Recovery – acceptable

Laboratory control samples (LCS) were evaluated and were within the control limits listed in the QAPP (EPI, 2008).

5.8 Field Duplicate Sample Analysis – acceptable

Field duplicate samples were collected and analyzed as follows:

Table 3: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SF09	GW-110118-PL2-021A-0	GW-110118-PL2-021A-1

Field duplicate analysis criteria were met.

6.0 INORGANICS - DISSOLVED METALS

The laboratory provided a provided a summary data package for review of metals analyses and the items reviewed during validation are summarized below.

6.1 Analytical Methods – acceptable

Samples for dissolved metals analysis were prepared using EPA Methods 3010A. Samples for dissolved metals analysis were completed by EPA Methods 200.8 for arsenic and EPA Method 6010B for manganese. No sampling, documentation, and reporting discrepancies were noted.

6.2 Sample Holding Times and Preservation – acceptable

All samples were prepared and analyzed within the recommended holding period from the date of collection (180 days for metals). All holding time criteria were met.

6.3 Laboratory Reporting Limits – acceptable

All metals listed in the Interim Measure Work Plan (2008) QAPP were analyzed for and requested reporting levels were met with the following discussion:

■ The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds. No action was taken.

6.4 Blank Contamination – acceptable

The method blanks were free of target compounds.

6.5 Laboratory Control Sample Recovery – acceptable

LCS (blank spike) recoveries were within QC limits of 80 to 120 percent.

6.6 Matrix Spike/Matrix Spike Duplicate Analysis – acceptable

Matrix Spike (MS) analysis was performed on GW-110117-PL2-017A-0 in SDG SE88. In SDGs where MS data are not available refer to LCS, matrix duplicate, and field duplicate data for precision and accuracy information. All MS recoveries were acceptable.

6.7 Duplicate Analysis – acceptable

Laboratory duplicate analysis was performed on the same selected sample as for the MS analysis listed in the previous section. Duplicate analysis criteria were met.

6.8 Field Duplicate Sample Analysis

Field duplicate samples were collected and analyzed as follows:

Table 4: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SF09	GW-110118-PL2-021A-0	GW-110118-PL2-021A-1
SF22	GW-110119-PP-2B-I-0	GW-110119-PP-2B-I-1

Field duplicate analysis criteria were met.

7.0 GENERAL CHEMISTRY - TOTAL ORGANIC CARBON, FERROUS IRON, N-NITRATE AND SULFATE, VOLATILE FATTY ACIDS, AND BACTERIAL CENSUS

The laboratory (ARI) provided a Level I data package for analysis TOC, ferrous iron, and anions; the items reviewed during validation are summarized below. Microseeps provided a Level I data package for analysis of the organic volatile fatty acids (VFAs) and Microbial Insights provided the same for the bacterial census analysis.

7.1 Analytical Methods and Reporting – acceptable

The anions (N-Nitrate, and Sulfate) were analyzed using EPA method 300.0. Total Organic Carbon was analyzed by EPA Method 415.1. Ferrous Iron was analyzed by Standard Method 3500 FeD. Organic Volatile Fatty Acids (VFAs) (Pyruvic, Lactic, Acetic, Propionic, and Butyric) were analyzed by ion chromatography at Microseeps. The Bio-Dechlor Bacterial Census was analyzed by qDHC (RT-PCR) – dehalococcoides by Microbial Insights. All methods and reporting requirements were met.

7.2 Sample Holding Times and Preservation – acceptable

All samples were prepared and analyzed within the recommended holding period from the date of collection to analysis. Sample preservations met the QAPP (EPI, 2008) requirements.

7.3 Laboratory Reporting Limits – acceptable

The laboratory achieved the reporting limits (RLs) required by the approved QAPP (EPI, 2008) with the following comments:

- The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds. No action was taken.
- RLs for Lactic and Pyruvic Acid were elevated at 25 mg/L and 10 mg/L, respectively, instead of 1 mg/L as listed in the QAPP. No action was taken.

7.4 Blank Contamination – acceptable

The calibration blanks and/or method blanks were free of target compounds with the following comment:

■ No blank information was provided for the bacterial census

7.5 Laboratory Control Spike and/or Standard Reference Material Recovery – acceptable

- A standard reference material (SRM) sample was analyzed for N-nitrate, sulfate and total organic carbon for each analytical batch. All SRM recoveries were acceptable.
- An LCS was analyzed for Ferrous Iron and VFAs. The recoveries were in control.
- No LCS or SRMs were analyzed for the bacterial census. No action was taken other than to note.

7.6 Matrix Spike/Matrix Spike Duplicate Analysis

Matrix Spike (MS) analysis was performed in SDG SE88 on sample GW-110117-PL2-017A-0 for Ferrous Iron, Anions, TOC and VFAs and in SDG SF09 on sample GW-110118-PP-1B-I-0 for TOC and GW-110118-PL2-031A-0 for Ferrous Iron and Anions. In SDGs where MS data are not available refer to LCS, matrix duplicate, and/or field duplicate data for precision and accuracy information. All MS recoveries were acceptable with the following comments:

- MS/MSD analysis is not possible for bacterial census analysis. No other QC was provided.
- SDG SE88: The VFAs MS/MSD RPD for pyruvic acid was out of control high. All samples were qualified as estimated (J/UJ).
- SDG SF09: The VFA MS/MSD % Recoveries and RPDs for lactic and pyruvic acid were out of control for the batch QC. Since the MS/MSD was not performed on a client sample, no action was taken.

7.7 Duplicate Analysis – acceptable

Laboratory duplicate analysis was performed on SDG SE88 on sample GW-110117-PL2-017A-0 for Ferrous Iron, Anions, TOC and VFAs; in SDG SF09 on sample GW-110118-PP-1B-I-0 for TOC and GW-110118-PL2-031A-0 for Ferrous Iron and Anions; and in SDG SF22 on sample GW-110119-PL2-035A-0 for Ferrous Iron. Duplicate analysis criteria were met with the following discussion:

■ No duplicates were analyzed for VFAs or qDHC. No action was taken other than to note.

7.8 Field Duplicate Sample Analysis

Field duplicate samples were collected and analyzed as follows:

Table 5: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SF09	GW-110118-PL2-021A-0	GW-110118-PL2-021A-1
SF22	GW-110119-PP-2B-I-0	GW-110119-PP-2B-I-1

Field duplicate analysis criteria were met with the following discussion:

■ SDG SF09 (0371A): The field duplicate RPD for bacterial census was high at 36.6%. The parent sample and its duplicate were qualified as estimated (J/UJ).

8.0 DATA QUALIFIERS

Data qualifiers applied by the laboratory have been removed from the data summary report sheets and superseded by data validation qualifiers as follows:

The following qualifiers were used to modify the data quality and usefulness of individual analytical results.

- U The constituent was analyzed for, but was not detected above the reported sample quantitation limit.
- The constituent was positively identified and detected; however, the concentration reported is an
 estimated value because the result is less than the quantitation limit or quality control criteria
 were not met.
- J+ The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.
- J- The constituent was positively identified and detected; however, the concentration reported is an
 estimated value because the result may be biased low.
- UJ The constituent was not detected; the associated quantitation limit is an estimated value because quality control criteria were not met.
- R Data are rejected due to significant exceedance of quality control criteria. The analyte may or may not be present. Additional sampling and analysis may be required to determine the presence or absence of the constituent. For statistical reasons, rejected values are not included in the database.
- UR The constituent is rejected at the reported quantitation limit.
- Y The reporting limit is elevated due to interference. The result is not detected.

9.0 DATA ASSESSMENT

Data review and validation was performed by an experienced quality assurance chemist independent of the analytical laboratory and not directly involved in the project. This is to certify that I have examined the analytical data and based on the information provided to me by the laboratory, in my professional judgment, the data are acceptable for use except where indicated by data qualifiers, which may modify the usefulness of those individual values.

Jel familiet	February 7, 2011
Jill/Lamberts	Date
Staff Environmental Scientist, Golder	
West Wayslas	February 14, 2011
Kent Angelos	Date
Principal & Project Director, Golder	

10.0 REFERENCES

EPA 2008, USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review, EPA-540-R-08-01, June, 2008.

EPA 2010, USEPA Contract Laboratory Program, National Functional Guidelines for Inorganic Data Review, USEPA-540-R-10-011, January 2010.

EPI, 2008, Interim Measure Work Plan for 2-66 Sheetpile, Boeing Plant 2, Seattle/Tukwila, Washington, Prepared by Environmental Partners, Inc. (EPI), July 2008.

Golder Associates Inc. (Golder), 2009, Compendium of Sampling and Analysis Plans and Quality Assurance Plans for Boeing Plant 2, Prepared for The Boeing Company by Golder Associates Inc. (Golder) and Environmental Partners, Inc. (EPI), June of 2009.

TECHNICAL MEMORANDUM

Date:June 27, 2011Project No.:013-1646-011.700.01To:Will ErnstCompany:The Boeing Company

From: Jill Lamberts, Staff Environmental Scientist

Kent Angelos, Principal and Project Director

cc: Jeff Dengler and Doug Kunkel, EPI Email: jill_lamberts@golder.com

RE: BOEING PLANT 2 - 2-66 ERD IM - DATA VALIDATION QA/QC REVIEW - APRIL 2011

SAMPLING ROUND

1.0 INTRODUCTION

A total of 26 water samples (including 3 field duplicates and 4 trip blanks) were collected April 18 to 21, 2011 as part of the Boeing Plant 2 Groundwater Interim Measures Work Plan for 2-66 ERD IM (EPI, 2008). Samples were analyzed by Analytical Resources Incorporated (ARI) of Tukwila, Washington, Microbial Insights of Rockford, Tennessee, and Microseeps of Pittsburg, Pennsylvania for the following parameters:

- Volatile Organic Compounds (VOCs) by EPA Method 8260C
- Total Organic Carbon (TOC) by EPA 415.1
- Dissolved Gases (Methane, Ethane, and Ethene MEE) by Modified RSK 175
- Dissolved Metals (Arsenic and Manganese) by EPA Methods 200.8 and 6010B
- Ferrous Iron by SM 3500 FeD
- Anions (N-Nitrate and Sulfate) by EPA 300.0
- Organic Volatile Fatty Acids (VFAs) (Pyruvic, Lactic, Acetic, Propionic, and Butyric Acids) by ion chromatography by Microseeps
- Bio-Dechlor Bacterial Census by qDHC (RT-PCR) dehalococcoides by Microbial Insights

With the exception of the bacterial and metabolic acids analysis, samples were analyzed in accordance with procedures described in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods (USEPA SW-846, 3rd edition) 300.0, 415.1, 8260C, 6010B, metals, EPA Method 200.8, Revision 5.5; Determination of Trace Elements in Water and Wastes by Inductively Coupled Plasma-Mass Spectrometry, Standard Methods for the Examination of Water and Wastewater (20th Edition).*

The bacterial and metabolic acids analyses were analyzed in accordance with the *Microbial Insights* and *Microseeps Standard Operating Procedures*.

2.0 SAMPLE DELIVERY GROUPS, SAMPLES AND ANALYSES

Samples were analyzed and results reported by the laboratory in batch numbers as summarized below:

SS33 (VOCs, TOC, and Dissolved Metals):

GW-110418-PL2-008B-0 GW-110418-PL2-008C-0 GW-110418-PL2-041AA-0

GW-110418-PP-4B-I-0 GW-110418-PP-4B-O-0 Trip Blank

SS64, P1104216, 064ID (VOCs, TOC, MEE, Ferrous Iron, Dissolved Metals, Anions, VFAs, and

GW-110419-PP-1B-I-0 GW-110419-PL2-021B-0 GW-110419-PL2-021A-0

GW-110419-PL2-017A-0 GW-110419-PL2-017A-1 Trip Blank

SS86, P1104244 (VOCs, TOC, MEE, Ferrous Iron, Dissolved Metals, Anions, and VFAs):

GW-110420-PL2-021C-0 GW-110420-PP-5B-I-0 GW-110420-PL2-032A-0 GW-110420-PL2-031A-0 GW-110420-PP-3A-I-0

GW-110420-PP-3B-I-0 Trip Blank

ST02 (VOCs, TOC, MEE, Ferrous Iron, and Dissolved Metals):

GW-110421-PL2-010A-0 GW-110421-PL2-035A-0 GW-110421-PP-2B-I-0

GW-110421-PP-2B-I-1 GW-110421-PP-2B-O-0 Trip Blank

Quality assurance/quality control (QA/QC) reviews of laboratory data were performed in the laboratory in accordance with the laboratory quality assurance program plan. The data validation QA/QC review focused primarily on laboratory result summary sheets and quality control summary sheets to ensure that work plan data quality objectives were met for the project.

Data validation was conducted in accordance with the criteria outlined in the National Functional Guidelines for Organic Data Review (EPA, 2008) and the National Functional Guidelines for Inorganic Data Review (EPA, 2010), modified to include method specific requirements of the laboratory analytical methods and *Interim Measure Work Plant for 2-66 Sheetpile, Boeing Plant 2 Seattle/Tukwila (EPI, 2008)*. Raw data sheets were reviewed as necessary to confirm conditions reported and to support application of qualifiers to analytical results

The validation level for the data is Level I, as described in the QAPP (EPI, 2008). The following is a summary of quality control elements associated with each analytical fraction and the status of that element as a result of the data validation process.

3.0 SAMPLING, DOCUMENTATION AND REPORTING

Sample acknowledgements, chain-of-custody, request forms and data package completeness were evaluated with the following noted:

SDGs SS33 and SS86: Cooler receipt form indicates that the samples were received out of temperature compliance. No action was taken because the samples were collected and delivered to the lab within 3 hours.

- Multiple SDGs: Some samples were preserved in the lab instead of the in the field or analyzed within a shortened hold time. No action was required since all samples were analyzed within recommended holding times.
- SDG SS86: Cooler receipt form indicates that one of two VOC vials for the Trip blank had small air bubbles. No action was required since the samples were all analyzed within the recommended holding time.
- SDGs SS86 and ST02: Cooler receipt form indicates samples were received with headspace for Ferrous Iron analysis. The samples had proper preservation and were analyzed upon receipt so no action was taken, but exposure to the atmosphere should be minimized for future events.
- Results for volatile organic compound 1, 1, 2-trichloro-1, 2, 2-trifluoroethane are reported in a truncated format (1, 1, 2-trichloro-1, 2, 2-trifluoroe) due to ARI report format. No action was taken.

4.0 VOLATILE ORGANIC COMPOUNDS

Level 1 summary data packages were provided for the VOC analysis. The items reviewed during validation are summarized below.

4.1 Analytical Methods – acceptable

Samples for VOC analysis were analyzed by gas chromatography/mass spectrometry (GC/MS) using EPA SW846 Method 8260C. The QAPP lists the method for VOCs as 8260B. ARI updated their methods due to a NELAP audit and a memo dated 6/1/2009 was sent to Boeing, EPI, and Golder Project Managers informing them of the change.

4.2 Sample Holding Times and Preservations – *acceptable*

All samples were prepared and analyzed within 14 days of sample collection (preserved water samples) or within 7 days of sample collection (unpreserved water samples).

4.3 Laboratory Reporting Limits – acceptable

The laboratory achieved the reporting limits (RLs) required by the approved quality assurance project plan (EPI, 2008) with the following exceptions:

Quality assurance project plan (QAPP) reporting limits were not met for nine compounds. A review of current ARI detection limits shows that both method and reporting limits were updated (as of 6/1/2009). Compounds that do not meet QAPP stipulated reporting levels (RLs) are identified in the following table:

Table 1: 2-66 IM ERD VOC Reporting Limits

Compound	QAPP Table 6 RLs (μg/L)	Lab Reported RLs μg/L
Chloromethane	0.2	0.5
Bromomethane	0.2	1.0
Methylene Chloride	0.3	0.5
Acetone	3.0	5.0

Compound	QAPP Table 6 RLs (μg/L)	Lab Reported RLs μg/L
2-Butanone	2.0	5.0
Vinyl Acetate	0.5	1.0
2-Chloroethylvinylether	0.5	1.0
4-Methyl-2-Pentanone	2.0	5.0
2-Hexanone	2.0	5.0

- No action was taken; this change in the RLs was sent by ARI to Boeing, EPI, and Golder Project Managers on June 1, 2009 and subsequently approved and implemented as part of the June 2009 QAPP compendium (Golder, 2009).
- Trichloroethene is listed twice in QAPP Table 5. No action was taken.
- The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds.

4.4 Instrument Calibration

Calibration review is not required under the QAPP; however, the lab provided information on the calibration performance in the case narratives. All of the calibration criteria were met with the following exceptions:

- SDG SS64: The continuing calibration standard (CCAL) on 4/20/2011 was out of control for Bromoform. Associated samples were qualified as estimated (J/UJ) for this analyte.
- SDG SS64: The initial calibration standard (ICAL) on 4/20/2011 and 4/26/2011 was out of control for 2-chloroethylvinylether (2CEVE). Associated samples were qualified as rejected for non-detects (UR) or estimated for detects (J) for this analyte.
- SDG SS64: The CCAL on 4/26/2011 was out of control for 2CEVE. Since it was already qualified due to ICAL issues, no further action was taken.
- SDG SS86: The CCAL on 4/22/2011was out of control for chloromethane. Associated samples were qualified as estimated (J/UJ) for this analyte.
- SDG ST02: The ICAL and CCAL were out of control for 2CEVE. Associated samples were qualified as rejected for non-detects (UR) or estimated for detects (J) for this analyte.

4.5 Blank Contamination – acceptable

The method blanks and trip blanks were free of contamination.

4.6 Surrogate Recovery – acceptable

All surrogate recoveries were within control limits.

4.7 Matrix Spike Compound Recovery

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) analysis was performed on GW-110418-PL2-041AA-0 in SDG SS33 and on GW-110419-PL2-017A-0 in SDG SS64. In SDGs where MS/MSD data are not available refer to LCS/LCSD and field duplicate data for precision and accuracy information. All MS/MSD recoveries and relative percent differences (RPDs) were acceptable with the following exceptions:

■ SDG SS64: The MS/MSD was out of control for 2CEVE and Bromoform. No action was taken because these analytes were already qualified due to poor calibration response.

4.8 Laboratory Control Sample Recovery

Laboratory control samples (LCS) were evaluated using control limits listed in Table 4 of the QAPP (EPI, 2008) and recently updated CLs on the ARI website. All LCS/LSCD recoveries and relative percent differences (RPDs) were acceptable with the following exceptions:

- SDG SS64: The LCS and/or LCSD from 4/20/2011 was out of control for 2CEVE and Bromoform and had a poor RPD for 2CEVE. No action was taken as these analytes were already qualified due to poor calibration responses.
- SDG SS64: The LCSD from 4/26/2011 was out of control for 2CEVE. The LCS was in control. No action was taken other than to note.
- SDG ST02: The LCSD was out of control for 2CEVE. The LCS was in control. No action was taken other than to note.

4.9 Field Duplicate Sample Analysis – acceptable

Field duplicate samples were collected and analyzed as follows:

Table 2: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SS86	GW-110420-PL2-032A-0	GW-110420-PL2-032A-1
ST02	GW-110421-PP-2B-I-0	GW-110421-PP-2B-I-1

Field duplicate analysis criteria were met.

5.0 METHANE, ETHANE, AND ETHENE (MEE)

The laboratory provided Level I summary forms for compounds methane, ethane, and ethene. The items reviewed during validation are summarized below.

5.1 Analytical Methods – acceptable

Samples for MEE parameters were analyzed using EPA Method RSK-175 (Modified).

5.2 Sample Holding Times and Preservations

All samples were prepared and analyzed within the recommended holding times 14 days from collection to analysis. Please note that the QAPP stipulates that the hold time for MEE is 7 days. The lab was contacted to verify the hold time 5/11/2009. The lab responded that the QAPP was incorrect and the true hold time is 14 days. No action required other than to note.

5.3 Laboratory Reporting Limits – acceptable

The laboratory achieved the reporting limits (RLs) required by the QA Plan with the following exception:

- Table 5 of the QAPP stipulates a reporting level of 1.0 μg/L for methane, ethane, and ethene. The ARI reporting limits are 0.7 μg/L for methane, 1.2 μg/L for ethane, and 1.1 μg/L for ethane. EPI's project manager was contacted and approved the slightly higher limits [personal comm. J. Dengler]. No further action was taken other than to note this.
- The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds. No action was taken.

5.4 Blank Contamination – acceptable

The method and equipment blanks were free of target compounds.

5.5 Surrogate Recovery – acceptable

All surrogate recoveries were within control limits.

5.6 Matrix Spike Compound Recovery – acceptable

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) analysis was performed on GW-110419-PL2-017A-0 in SDG SS64. In SDGs where MS/MSD data are not available refer to LCS/LCSD and field duplicate data for precision and accuracy information. All MS/MSD recoveries and relative percent differences (RPDs) were acceptable.

5.7 Laboratory Control Sample Recovery – *acceptable*

Laboratory control samples (LCS) were evaluated and were within the control limits listed in the QAPP (EPI, 2008).

5.8 Field Duplicate Sample Analysis – acceptable

Field duplicate samples were collected and analyzed as follows:

Table 3: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SS86	GW-110420-PL2-032A-0	GW-110420-PL2-032A-1

Field duplicate analysis criteria were met.

6.0 INORGANICS – DISSOLVED METALS

The laboratory provided a provided a summary data package for review of metals analyses and the items reviewed during validation are summarized below.

6.1 Analytical Methods – acceptable

Samples for dissolved metals analysis were prepared using EPA Methods 3010A. Samples for dissolved metals analysis were completed by EPA Methods 200.8 for arsenic and EPA Method 6010B for manganese. No sampling, documentation, and reporting discrepancies were noted.

6.2 Sample Holding Times and Preservation – acceptable

All samples were prepared and analyzed within the recommended holding period from the date of collection (180 days for metals). All holding time criteria were met.

6.3 Laboratory Reporting Limits – acceptable

All metals listed in the Interim Measure Work Plan (2008) QAPP were analyzed for and requested reporting levels were met with the following discussion:

The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds. No action was taken.

6.4 Blank Contamination – acceptable

The method blanks were free of target compounds.

6.5 Laboratory Control Sample Recovery – acceptable

LCS (blank spike) recoveries were within QC limits of 80 to 120 percent.

6.6 Matrix Spike/Matrix Spike Duplicate Analysis – acceptable

Matrix Spike (MS) analysis was performed on GW-110420-PL2-017A-0 in SDG SS64. In SDGs where MS data are not available refer to LCS, matrix duplicate, and field duplicate data for precision and accuracy information. All MS recoveries were acceptable.

6.7 Duplicate Analysis – acceptable

Laboratory duplicate analysis was performed on the same selected sample as for the MS analysis listed in the previous section. Duplicate analysis criteria were met with the following discussion:

■ SDG SS64: The lab indicated on the case narrative that the RPD for manganese was out of control. Upon inspection, the validator determined that the results were less than 5 times the RL so no further action was required.

6.8 Field Duplicate Sample Analysis – acceptable

Field duplicate samples were collected and analyzed as follows:

Table 4: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SS86	GW-110420-PL2-032A-0	GW-110420-PL2-032A-1
ST02	GW-110421-PP-2B-I-0	GW-110421-PP-2B-I-1

Field duplicate analysis criteria were met.

7.0 GENERAL CHEMISTRY - TOTAL ORGANIC CARBON, FERROUS IRON, N-NITRATE AND SULFATE, VOLATILE FATTY ACIDS, AND BACTERIAL CENSUS

The laboratory (ARI) provided a Level I data package for analysis TOC, ferrous iron, and anions; the items reviewed during validation are summarized below. Microseeps provided a Level I data package for analysis of the organic volatile fatty acids (VFAs) and Microbial Insights provided the same for the bacterial census analysis.

7.1 Analytical Methods and Reporting – acceptable

The anions (N-Nitrate, and Sulfate) were analyzed using EPA method 300.0. Total Organic Carbon was analyzed by EPA Method 415.1. Ferrous Iron was analyzed by Standard Method 3500 FeD. Organic Volatile Fatty Acids (VFAs) (Pyruvic, Lactic, Acetic, Propionic, and Butyric) were analyzed by ion chromatography at Microseeps. The Bio-Dechlor Bacterial Census was analyzed by qDHC (RT-PCR) – dehalococcoides by Microbial Insights. All methods and reporting requirements were met.

7.2 Sample Holding Times and Preservation – acceptable

All samples were prepared and analyzed within the recommended holding period from the date of collection to analysis. Sample preservations met the QAPP (EPI, 2008) requirements.

7.3 Laboratory Reporting Limits

The laboratory achieved the reporting limits (RLs) required by the approved QAPP (EPI, 2008) with the following comments:

- The reporting limits were not met in cases in which the samples were analyzed at dilutions due to high concentrations of target compounds. No action was taken.
- RLs for Lactic and Pyruvic Acid were elevated at 25 mg/L and 10 mg/L, respectively, instead of 1 mg/L as listed in the QAPP. No action was taken. RLs for Acetic, Propionic, and Butyric Acid were elevated to 5.0 mg/L instead of 1 mg/L as listed in the QAPP. No action was taken other than to note.

7.4 Blank Contamination – acceptable

The calibration blanks and/or method blanks were free of target compounds with the following comment:

No blank information was provided for the bacterial census.

7.5 Laboratory Control Spike and/or Standard Reference Material Recovery – *acceptable*

- A standard reference material (SRM) sample was analyzed for N-nitrate, sulfate and total organic carbon for each analytical batch. All SRM recoveries were acceptable.
- An LCS was analyzed for Ferrous Iron and VFAs. The recoveries were in control.
- No LCS or SRMs were analyzed for the bacterial census. No action was taken other than to note.

7.6 Matrix Spike/Matrix Spike Duplicate Analysis

Matrix Spike (MS) analysis was performed in SDG SS33 on sample GW-110418-PL2-008B-0 for TOCs; in SDG SS64 on sample GW-110119-PL2-017A-0 for TOC, anions, ferrous iron, and VFAs; in SDG SS86 on sample GW-110420-PL2-021C-0 for TOC and on sample GW-110420-PL2-032A-0 for VFA; and in SDG STO2 on sample GW-110421-PL2-010A-0 for TOC. In SDGs where MS data are not available refer to LCS, matrix duplicate, and/or field duplicate data for precision and accuracy information. All MS recoveries were acceptable with the following comments:

- MS/MSD analysis is not possible for bacterial census analysis. No other QC was provided.
- SDG SS86: The VFA MS/MSD RPDs for pyruvic acid was out of control. All samples were qualified as estimated (J/UJ).

7.7 Duplicate Analysis – acceptable

Laboratory duplicate analysis was performed in SDG SS33 on sample GW-110418-PL2-008B-0 for TOCs; in SDG SS64 on sample GW-110119-PL2-017A-0 for TOC, anions, and ferrous iron; in SDG SS86 on sample GW-110420-PL2-021C-0 for TOC and on sample GW-110420-PL2-032A-0 for ferrous iron; and in SDG ST02 on sample GW-110421-PL2-010A-0 for TOC and on sample GW-110421-PL2-035A-0 for ferrous iron. Duplicate analysis criteria were met with the following discussion:

No duplicates were analyzed for VFAs or qDHC. No action was taken other than to note.

7.8 Field Duplicate Sample Analysis

Field duplicate samples were collected and analyzed as follows:

Table 5: Field Duplicates

Lab SDG	Sample	Field Duplicate Sample
SS64	GW-110419-PL2-017A-0	GW-110419-PL2-017A-1
SS86	GW-110420-PL2-032A-0	GW-110420-PL2-032A-1
ST02	GW-110421-PP-2B-I-0	GW-110421-PP-2B-I-1

Field duplicate analysis criteria were met with the following discussion:

■ SDG S64 (0641D): The field duplicate RPD for bacterial census was high at 80.6%. The parent sample and its duplicate were qualified as estimated (J/UJ).

8.0 DATA QUALIFIERS

Data qualifiers applied by the laboratory have been removed from the data summary report sheets and superseded by data validation qualifiers as follows:

The following qualifiers were used to modify the data quality and usefulness of individual analytical results.

- The constituent was analyzed for, but was not detected above the reported sample quantitation limit.
- The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result is less than the quantitation limit or quality control criteria were not met.
- The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased high.
- The constituent was positively identified and detected; however, the concentration reported is an estimated value because the result may be biased low.
- The constituent was not detected; the associated quantitation limit is an estimated value because UJ – quality control criteria were not met.
- Data are rejected due to significant exceedance of quality control criteria. The analyte may or may not be present. Additional sampling and analysis may be required to determine the presence or absence of the constituent. For statistical reasons, rejected values are not included in the database.
- The constituent is rejected at the reported quantitation limit.
- The reporting limit is elevated due to interference. The result is not detected.

9.0 DATA ASSESSMENT

Data review and validation was performed by an experienced quality assurance chemist independent of the analytical laboratory and not directly involved in the project. This is to certify that I have examined the analytical data and based on the information provided to me by the laboratory, in my professional judgment, the data are acceptable for use except where indicated by data qualifiers, which may modify the usefulness of those individual values.

Jel Lanubet	June 27, 2011
Jill Lamberts	Date
Staff Environmental Scientist, Golder	
108111 P	
and a congres	<u>June 30,2011</u>
Kent Angelos	Date

Principal & Project Director, Golder

10.0 REFERENCES

EPA 2008, USEPA Contract Laboratory Program, National Functional Guidelines for Organic Data Review, EPA-540-R-08-01, June, 2008.

EPA 2010, USEPA Contract Laboratory Program, National Functional Guidelines for Inorganic Data Review, USEPA-540-R-10-011, January 2010.

- EPI, 2008, Interim Measure Work Plan for 2-66 Sheetpile, Boeing Plant 2, Seattle/Tukwila, Washington, Prepared by Environmental Partners, Inc. (EPI), July 2008.
- Golder Associates Inc. (Golder), 2009, Compendium of Sampling and Analysis Plans and Quality Assurance Plans for Boeing Plant 2, Prepared for The Boeing Company by Golder Associates Inc. (Golder) and Environmental Partners, Inc. (EPI), June of 2009.

